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ABSTRACT: ‘the use of synthetic titie series (artificially simulated time series with specific
and useful properties built into them) to increase the confidence in the statistical parameters of -
limited hydrometeorological time series is the subject matter of this paper. By constructing
fourteen synthetic time series, a sensitivity analysis is performed to assess the net effect of
nenstationarity, number of lags and small sample size on estimated spectral densities. Similarly,
the effects of the harmonic-removal procedure on the resulting residual series and the
confidence limits in cross spectral analysis are examined in the Jight of synthetic time series
analysis. These analyses clearly indicate the useful supplemental role of synthetic time series in
data analysis.

NATURE OF THE PROBLEM

Most of the modern environmental data processing systeins use various sdvance
statistical techniques to analyze the available bank of data. Among many others, the basic
purposes of applying such methods is to provide statistical information which, in turn,
can be used in practice for; .

1} designing sampling intervals (Gunnerson, 1966),

2) validating the interrelationships between the systems pa:ameters {Rodriquez, 1967,
Rodriquez and Yevjevich, 1968),

3) interpreting the response of meteorological systems (Panofsky and Brier, 1968),

4) analyzing the atmospheric and terrestrial branches of the hydrologic cycle (Chow
and Kareliotis, 1970; Kareliotis and Chow, 1972; Roesner and Yevjevich, 1966;
Shahane, 1973),

While trying to extract such practical information with the help of these sophisticated
statistical techniques, these techniques are looked upon as black boxes. As a result, there
seems to be an increasing tendency to emphasize the interpretation task of statistical
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parameters (provided by the black boxes) rather than the understanding of the basic
statistical assumptions of the black boxes. This scems to be grounds for a possible
confrontation between applied scientists and statisticians. A typical debate between these
two groups of disciptines centers on the basic difference in the fundamental philosophy
and approach of looking at statistical methods. Applied scientists claim that they are
required to make decisions at a particular point in time based on the available set of data
and thus their effort is directed towards applying all the possible statistical techniques
(conventionat as well as advanced) to extract the maxinum decisive information from the
available data which may be limited or sufficient. In other words, their basic planning
philosophy seems to be that “something is better than absolute nothing.” On the other
hand, statisticians examine the available data firt and then depending on the
characteristics of the datz, sample size and the assumptions involved with different
statistical theories, they select the appropriate technique for analyzing the available data.
However, considering the fact that most of the time the data collectivn step is comnpletely
independent of the data analysis procedure, the collected data may not fulfill the basic
theoretical statistical assumptions. In such cases, a statistician may be unable to analyze

“such data to provide any statistical inference confirming the other philosophy that

“absolute nothing is better than somcthing possibly incorrectly derived from a limited
data base.” Retently, the authors have gone through the above dilemmatic debate whiie
anulyzing some hydrometeorological data of the United States and the main purpose of
this paper is to demonstrate a simple methodology to achieve a golden mean between the
above two extrenie viewpoints. '

RESEARCH PROCEDURE

In an attempt to explore the characteristic bchavior of the hydrometeorological
components of the United States, the available five years monihly observations of
atmospheric moisture transport (period May 1958 to April 1963) were first used to
generate the atmospheric transport (V+Q), precipitable water (AW), precipitation (P,
runoff (R), evapotranspiration (E), and change In storage (AS) components. ‘of the
atmospheric and terrestrial branches of the subcontinental hydrologic cycle. Although
various hydrologic adjustments and comparisons strongly reflect the adequacy of our
adopted methodology (Shahane, 1973), the data provides only sixty discrete values for
the hydrometcorological time series. It is to be noted, however, that the available and
generated values constitute a unique set of data based on the largest number of
hydrometeorological observations so far. Therefore, the dilemmatic situation, similar to
that mentioned in the previous section, arlses when one wants to apply statistical
methods to analyze such a relatively short hydrometeorological data set. More
specificially, the dilemma relates to the following questions.

1) Is it feasible to apply sophisticated techniques like autocorrelation, specnal and
cross-spectral techniques to explore the intermal characteristics of the limited
hydrometecrologicai data set?

From the previous discussion, we know that a statistician wnli probably - answer the
above question by “No,” and an applled scientist by “Yes.” Thus, the second question
immediately follows:

2) Is it possible 1o devise a simple methodology to satlsfy both professionals by
performing a sensitivity analysis of some kind?



seties were artificially formed with different magnitudes for the sixiy numbers (but in the
observed range of the available hydmmeleurological series) and with a known period built
into them. Such time series are known as synthetic time series. Since, in the
hydrmneteurulogicaf study reported by Shahine (1973), it is sssinney that the generating
process of the hydrbmeleorological components is the sum of 4 deterministic angd 5
random part, for comparative evaluation of data processing techniques, synthetic time
series were also formed with known determinjstic and random parts. Such time series are
showii in table | and 2. Table | includes eight synthetic time series with a periodijc
deterministic part only. Basically these serles have different Mmagnitude levels but the same

formed with a 12 month period having different within-year variances, Table 2 depicts six
synthetic time series wit], both deterministic and random parts built into them. The
periodic deterministic part is shown in column I. To this deterministic part, & random
part with different varignees is added to form the remaining five synthetic time series as
given in columnsg 2,3,4,5and 6. The random Parts ure generated from normal random
nuntber tables, _ ‘

While consiructing these synihetic time series, there can be an Opposing argument that
for obtaining a comparable . and rational picture by synthetic time series, many
combinations of different numbers are required. However, the more realistic counter-
afsument to the above point is tha it is possible to include adequately ali the possible
basic periodic and random characteristics of hydromereorologlcal time series in a smal)

Spectral density analysis is widely used gs » powerful data processing tool to detect the
Rature of the deterministic part of a stationary time series. However, the basic
classification of stationary versus nonstationary seems to be inadequately agreed upen by
hydrologists ang statisticians. Roesner and Yevjevich (1966) have mathematically
expressed stationarity ag

EX) =4 =constant {first order stationary)
= g2 + 3
= constant (second order stutionary)

EIXeXerp, Xear, ]
=g[(t+L,)-t, (t+L;)-t]
=8(L,L,)
= constant (third order stationary)



TABLE 1. Eight Syathetic Periodic Time Series
{with Only Detenminisiic Purt) Used in Comparison of Irequency Responses.

Synthetic Time Series

t 2 3 4 5 [ 7 8
1 5 1t -l 1 -0 7.50 1.25
02 6 n -2 2 -8 5.40 1558
6.3 7 k1) -1 4 -6 11.90 1.93
0.4 ! 40 -4 8 -4 - 20 241
0.5 9 50 -5 16 -2 0.8 300
0.6 I 60" - 32 .3 0.0 M
0.7 i 0 -7 64 2 1.1} 4.66
0.8 10 %0 -8 128 4 0.5 582
0.9 9 %0 -9 156 6 130 7.25
1.600 8 100 -0 512 8 2.50 903
1.1 7 110 -H 1024 n n.80 11.28
1.2 [ 120 -12 48 12 .00 1.2
0.1 5 10 -1 t -1 7.50 1.25
0.2 6 0 -2 ? - 5.40 1.55
03 7 3th 3 4 =% 11.%0 193,
04 a8 4D ~4 .1 -4 2.00 4
0.5 9 50 -5 16 -2 0.80) 3.00
0.6 10 60 -6 32 & 0.H 174
0.7 7] kI, -7 54 2 -0.31 4.66
0.8 14 80 -8 128 4 0.50 5.82
0.9 9 90 -9 256 [ 7.50 7.25
] 8 106 -10 512 8 7.50 2.01
il 7 1in -t 124 10 0.50 11.25
1.2 6 130 -12 . 204K Y 11.00 11.02
o 5 - n -1 1 -t - 7.50 1.25
0.2 6 2 -2 2 -8 5.4 1.55
0.3 7 k1T -3 4 % LE.90 1.93
0.4 A au -4 B -4 200 2.41
0.5 9 50 -5 16 -2 0.80 3.00
thh 10 60 -6 ©32 0 0.1 3.74
8.7 11 ™ -7 64 2 ~0.31 a.66
0.8 10 8a -8 128 4 0.50 5.42
0.9 9 90 - 256 6 7.50 7.25
1.0 8 100 -10 512 8 7.50 9.03
1. 7 110 -11 1024 10 (.80 1.25
1.2 6 120 ~12 2048 i2 11.00 11.02
0.1 5 0 -t 1 10 7.50) 125
n.2 6 0 -2 2 -8 5.40 1.55
0.3 7 30 -3 4 % 11.80 1.99
0.4 R 4 -4 B -4 2.00 2.4]
0.5 9 50 -5 1€ -2 0.80 3.00
0.6 10 60 -6 32 0 t.ol 174
0.7 11 70 -7 64 2 .31 4.66
0.8 1 &0 -8 128 - 4 ®.50 5.82
0.9 9 90 -9 256 [ 7.50 7.28
1.0 4 106 -0 £92 P 7.50 9.0
1.1 7 10 -1 1M 10 8.40 11.28
1.2 6 120 -12 2048 12 11.00 Ha2
n.1 5 1o -l 1 ~10 1.50 1.2%
0.2 6 0 -2 2 - 5.40 1.55
0.3 7 It -1 4 -6 11.90 1.93
0.4 8 40 -4 8 -4 2.00 241
0.5 9 50 -5 16 -2 .80 300
0.6 10 &0 =% 12 [} .01 374
w7y 1 0 -1 64 2 £031 - 4.66
(K] 10 80 -8 128 4 .50 5.42
0.9 9 LT .9 256 6 7.50 7.25
1.0 8 1 -0 512 i 1.50 9.03
1.1 7 140 myY inm H 0.60 .25
1.2 6 12 11.00 11.02

120 -12 2048




" TABLE 2, Five Synthetic Tine Series ,
{with Their Determinislic and’ Randem Pasts) Used in Comparison of Frequency Responscs,

Synthetic Time Series with Nornial Random Component

Periodic
Deterministic  Variance=0.9  Variance=2.25 Variance=4.42 Varignce=3. 16 Variance=1.8
Part Mean=0 Mean=Q Mean=0 Mean=0 Mean=p
1 2 k] 4 5 1)
5 53216 $.5085 57119 56027 5.6100
6 5.7419 5.6235 54729 5.5538 5.5490
7 1.2400 13795 7.5M3 74498 | 7.4554
8 1.7316 1.5155 7.4060 7.4949 7.4906
9 9.5455 9.8625 10.2070 Tertl 220 P03 50
n 10369 10.0585 10.0819 10,0693 04702
11 110265 11.0420 110584 11.6498 11,05k
10 9.5931 9.3565% 9.0991 9.2313 D.2278
4 80229 2.4550 6.8370 7.1687 7.1460
B 76794 7.4930 1.2002 '7.3941 1.3916
7 7.1412 18045 9.5263 91349 9.1654
6 5.2259 4.7760 4.2864 4.5492 4.5312
1 3.7591 30645 2.2973 27118 26874
6 5.2447 6.3870 6.5418 64547 6.4644
7 861123 9.2535 10.5469 [[IXTRTH 10402
8 T.414 7.6985 1.5719 16429 76342
9 47644 10.21 50 10,7010 [DEBLT 104580
to - L2665 104219 10.5901 10.4996 10.5058
1 96861 89225 80915 B.5375 8570
i} 11.2%00 1 20400 12.8560 12.41 80 12.44 10
] 5,142 9.2250 9.3150 9.2667 - 9.2700
8 83149 8.49R1) R6972 K.569§ B.5976
7 71736 7.2745 7.3843 7.3255 7.3294
6 4.9544 4.3530 36942 10470 4.02%
5 5.9182 6.4835 7.0769 £.7584 6.7802
3 54158 4.4 280 3.7992 4.1367 41138
7 51719 54695 4.2973 47118 . 4.684
8 #9380 6.7970 6.6268 5.9509 5.9660
4 9.1936 7.7250 7.2150 7.4887 7.4700
1] 11,1738 11,8555 12.5917 12.1993 12.2265
L 109118 10.8608 10.8047 10,8346 11,8326
10 10.2597 10.411] 10.5754 10.4872 11,4932
Yy 10.04851 10.7220 114108 110354 11.0664
[ 1.H560 7.7750 7.6829 1.7316 7.7282
7 6.4757 6.4035 6.1149 1761 6.76412
6 44413 * 3.535% . 15497 10788 10426
5 547102 5.6645 $.9303 5.7876 57974
6 6.0K137 6.0061) 6.0084 6.0071 . 60072
? 6.4947 6.8135 §.766% 6.6027 6.8002
H 89373 24820 10.4748 9.7566 9.7784
9 9.128) 9.2023 9.2835 9.2400 9.2430
10 9.5950 9.3595 4.1033 9.2408 9.8314
11 96311 48355 1.9697 8.4344 44026
10 9.00134 9.8425 9.7795 9.4133 %8110
9 8.6301 84150 #1810 R.3066 8.2980
8 £.6121 58055 4.9317 5.3988 5.3666
7 5.47861) 5.5770 4.8496 5.1794 5.1568
6 6.2552 6.4035 6.5649 64782 6.4847
5 $.64R7 6.0890 65246 6.2908 6.306H
6 5.203] 4.7400 4.2360 4.5065 4.4880
? 7.4809 7.76015 8.0647 7.9014 9.9126
8 82742 LEREL R 6069 K.5138 85202
9 L3795 SAETL 12,0660 11 5958 H1.62HD
1 10,6225 113000 11.8207 CF1.5415 11.5606
11 L9422 10,9970 119958 L 19986 10.9964
10 114847 12,3475 12,3865 12,7825 12.4170
9 9.2024 9.1195% 9.447% . 1.3787 93434
8 93481 10,0318 10.9841 1052658 10.5578
7 681093 6.6985 657719 6.6417 66182
[ 6.605) 69510 7.3398 7.1343 FARTE!




where
X = the value of the observed varighle at time t,
E(Xp) = the expected value,
fand g = functions,
L. L, =time lags,

M = population mean,

o? = Population-variance of X;.

For hydrometeorologicdl data, for example, first order stationary implies that the
expected monthly value of January streamflow or precipitation s the same as the
expected value of any other month (say July) streamflow or precipitation, According (o
this statisticat definition of Slationurity, most of the hydromelporol_ugicul data witl
seasonal viviations are nonstationary. Aithough the Purpose of checking for stationarity js
to make sure thyy the covariance Structure of the datg does not change suhstzmtial]y with
time due (o artifically impused conditions, it seeins that hydraulic engineers haye 3
different way of looking at stationarity in thejr hydrologic daia. Many such efforts by
Chow (1970), Wastler (1969), first looked for the presence of trend by visug) ctinparison
or by a suitabis testing procedure. [f trend was nog observed, then the data was presumed
to be first arder stationary. If tyend was detected, the original time serfes was made
“stationary™ (Tirst order) by femoving the obseived trend, The transformed time series
was then subjected o Spectral analysis wiicly assunKs stationarity. However, (le
slatistica] theary of Spectral analysis requires the time series (o be second order Stationary
also, In engingering applications, where Statistical results ape interpreted in light of
physical phenomenon, i ihe Asumption of second order Stationarity s artificially
satisfied by some further transformation of the data, the pliysical intempretation of the
resulting statistica parameters becoses weak (although the Statistical analysis i Muore
valid from (he Statistician’s point of view). In other words, the dilemmag i that if the
stimple record satisfies the second order stationarity condition, then gng then only, can
the specitral density technique be applied, whereas from the hydrologic viewpoint, if an
effort is made 1o salisfy the above Statistical condition, physical interpretation s lost. To
get around thls dilemmg i dn englneering way, the eflects of violation of the statistical
assumptions on decisive’ parameters were studied, During such an effort, the net effect of
honstationarity, number of lags and small saniple size on the estimated spectra} donsities
(variancey gt different frequencies) wag attempted and specry) densities for the synthetic
time series for different lag numbers (ie., m=¢, 12, 18, 24 and 30) were computed.
Some of these values are given jn the figures 1 and 2. It can be seen from these figures
that the shape of the Spectrum plot for a nonstationury series is indeed different thay the
conventional one (a high spike at the significant frequency) ang j seems that the usug]
thumb ryte of Tequiring the maximum number of lags in the Spectral analysis to pe less
than one tenth of the sample record (ie.,m=6) s applicable to the hydrometeomlogical
time series whic), are similar to the Biven synthetic (ime series, F urthermore, since the
shape of the variance-spectrym plot for the synthetic time series is similar to the
hydrometeorological time series g5 feported by Shahane (1973), it appears that (le
variations in the statisticp) paramelers are due to the inherent characteristics of )i
observed and Benerated hydromerenrological time series and not due to the violation of
the basie Stutistica) assumptions underlying (he spectral density anlysis, Precisely, ti)is js
the type of answer needed for the secong question mentioned iy the Previous sectiog,
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Figure 1. Effects or Number of Lagson Specirsi Densitjes
of Synthetic Time Series No., | of Tabie 2,

To investigate the effects of trend femoval procedures on residual serieg (series formed
by subtracting the deterministje part from the original sevjes), spectral density has been
Stiggested by some investigators (Malhotra, 1969; Roesner and Yevjevich, 1966), Ir
spectral values for {he residual series are nog significant for the lags (for which significant
spectral values are Observed for tle original series) then j¢ indicates lhc,adequacy of
removing a fixed function of tjme from the originai series and the tesulting residyal series
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Figure 2. Standardization of Spectral Density Technigue
by Synthetic Time Series Given in Table 2.

can be further analyzed as a stationary process. Although such a method looks promising,
it seems to be invalid for our hydrometeorological time series because of the fact that the
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spectral densities show artificial periodicity in the residual part. This is demonstrated by
the analysis of synthetic time series by Shahane (1973). If four harmonics are removed
from an original synthetic time series, then it is observed that residual series become
random noise and spectral densities at various lags lie well below significant values.
However, spectral density analysis on these residual series of synthetic time series (ie.,
after removing four harmonics from the original synthetic time series) indicate the

~ presence of periodicity. Since hydrologic residual series basically represent a noise (which

is known o be a nonperiodic type), this type of ambiguous obseivation of periodicity
may be due 1o (1) inadequacy of spectral density technique for residual unalysis becanse
of small sample size or (2) the introduction of artificial periodicity while removing four
harmonics (maybe more than required) from the original series. To investigate the validity
of either of these lwo points, again, synthetic time series arc anulyzed. Five synthetic
time series (with known delerministic and random parts) are subjected to a run test. The
number of runs of u particular lime series can be instrumental in assessing the trend,
perivdic and random propertics of (he time series, Therefore, the run test was first
applied to the five original synthetic time series. Then it was applied o each of these
synthetic series after removal of one harmonic. The results of each run test are given in
table 3. From this table, it is observed that systematic harmonic removal does not appear

TABLE 3. Effects of Harmonics Removal
on Nuinber of Runs for Synthetic Tinme Series.*

Number of Runs for Syilthctic Time Series with 95%
Periodic and Normal Random Component Having Confidence

Different Variances of Random Part Interval

Description Yariance Variance Variance Variance Variance for No,
=4.42 =90 =316 =1.80 =2.25 of Runs

Five Original 17 14 16 16 16 . 2239
Synthetic Series

Synthetic Serics After 36 1 36 36 36 22-39
Removal of First Harmonics

Removal of Second Harmonics 38 33 36 38 36 22-39
Removal of Third Harmonics i8 36 36 k13 .36 22-39
Removal of Fourth Harmenics 34 36 34 34 31 22-39

*Synthetic time series are No. 2, 3, 4, 5 and 6 of Tabie 2.

to introduce any kind of artificial periodicity in the residual series, Thus, out of the two
possible reasons for observing periodicity in residual series (as mentioned above), the
inadequacy of the spectral density analysis seems to be more valid than the other. Such
inadequacy of spectral analysis seems to be related to the inadequate estimation of the
confidence level for the spectral density (which is computed from a formulation based on
large sample theory). From the above discussion, it can be summarized that the spectral
density analysis has previously been proposed also for checking the adequate remaval of
the periodic deterministic part from the original series. However, in our case with small
sample size, spectral density seems to be inadequate for such a purpose. This is anather



result which s obtained merely by analyzing synihetic time series ang thus shows the
simple and tmportant role of synthetic time series iy the data analysis,

Like any other statisticyl technique, an Important point of cross-speetral anaiysis i
related to the estimation of 957, coniidence limits for sample coherences anq pliase
angles. Among these two parameters, significant vales of coherence indicate qualitatively
the dependence Structure between (he hydromelcnroiogicul patameters in question.
Whereas sophisticated analysis (requiring large sample size) op phase angles can estimare
quantitatively he dependence between hydrologic contponents, For our sample size, it
seems  better, Statistically, to emphasize coherence confidence Jimits rather than
evalualing the significance values of phase angles. To estimate such 4 confidence limit for
coherence, there are two formulations available in (he literature. According to the

= |-pl/(d.L-1)
wiere d.f = degrees of freedom
=2N - m/2

nm
N = sample size
M= lag number (6 in our case)

From the tyhle provided by Panofsky and Brier (1958}, in our cuse with 20 degrees of
freedom, ang 95% Jimit'ofcoherence is 0.38. This means that the cliances are 1 in 20 thyt
a colierence of 0.38 or less will be foung by accident. I e coherence values of ihe
residual series of 4 parlicular data set ape higher than this value of 0.38 for og of the
significant frequencies, then dependence between those parameters js ascertained and vice
versa, .

Another approach s Proposed by Granger and Hatanaky (1964). T this approach,
instead of conputing degrees of freedom, the ratio ﬁl}‘ is computed and from the tables
provided by the aboye group, a 959, limiting coherence js estimated. In our cas¢, with
N =60 and in = 6, the limiiting valne of colierence wit), 95% level of confidence fs given
0.73, whereas Goodman’s approach provided a vajue ol 0.38, Therelore, 3 question now
arises as to “whicly of these two tpproaches is better und is to be selected?” |t seems that

If one jooks at the coherences of the original and residyg] series of synthetje time serjes
(glven in tables 4 and §), it is noted that the coherences for mast of tle combinations of
lag 0 and 1 have values-greater thun 0.38. Considering the fact that the residual series of
the synthetic time series are normay| viriates, there js likely to be no dependence between
these residual series. Therefore, limiting coherence of 0.73 given by Granger and
Hatanaka seems 1o be more realistic and convincing than Goodman’s estimates, Thus,
once again synthetic time series are used to select out the appropriate. confidence limitg

CONCLUSIONS

Based on the discussion presented in previoyg sections coupled wigl, an additiona)
detailed analy sis reported by Shahane (1973), the following conclusions can pe drawn:




1) Although the pse of spectral analysis to investigate the effects of trend removal
proceduie op residual series jg Suggested by Mallotra (1969), Roesner ang
Yevjevich (1966), it is found to he inadequate for oyr hydrumeleorolugical time
series becayse spectrul density shows artificial periodicity in the residual part of (he
time series. This can’ be clearly demonstrated by the analysis of syntheyjc time
series,

2) The results of the synthetic time serjes analysis in investigating {he comparative
fespunse (o some of the critical statisticg] points are tncouraging. Use of sycl, series
especially in spectra] gnd cross-spectral analysis for selecting the Proper number of
lags, smoothing technigue and confidence limits js beneficial, '

3) Sensitivity analysis performed op Statistical varjables of hydmmelcbwlngicaf anl
synthetic time series reveals thai (he Proper number of fags and Hznnming-’l"ukcy
weighis are more Important in cross-spectral analysis (hap in spectral density
analysis as piven by Shahane (1973}, This is due to the unrealistic ouiput of

TABLE 4, Cuherences ang Phase Angles of Original
B Synthetic Time Serics Given jn Table |,

Pair of Coherences* ang Phage Angles™* for Six Lags

Synthetie —— -
Time Serjes 0 1 2 3 4 5 [

/"\ 3and 2 0.949 0.878 0.055 0013 0.010 0.015 0.007
0.03 0.02 4.00 0.03 0.12 0.06 0.07

Jand 5 0.9G9 0.846 0.066 0.02¢ 0.023 0.040 0.62¢
.00 0.00 0.00 0.00 0.04 0.01 O.OII

3and 4 0.886 0.828 0.069 0.029 0.029 (L0352 0.026
-5 -0.0% ~0.03 -0.03 (.06 0.05 0.05

Jand 8 9.812 0.633 0.049 0.018 0.019 0.033 0178
-0.23 =0.2] 0t -0.27 0.14 ~0.16 -0.16

4and 2 0.880¢ 0.817 0.055 0015 0.013 0.023 0.010
0.07 0.07 .02 0.07 0.04 .00 0.00

4and 5 01.369 0.808 0.072 0.035 0.035 0.067 0.034
0.04 0.04 0.03 0.03 -0.02 ~0.04 -0.04

4and | 0.801 0.769 0.037 0.003 0.400 0.601 0.001
(.19 0.18 0.11 018 0.5 5.75 5.86

2and s 0.908 0.839 0.055 0.014 0.011 0.019 0.008
~0.03 -0.03 0.01 ~0.04 ~0.06 004 _poq

6 and 2 2.907 0619 0.037 0.009 0.007 0.014 .4158
0.24 0.22 -0.12 0.43 -0.14 0.29 0.23

Gand 5§ 2.561 0.627 0.052 0.022 0.025 3.043 0.250

0.240 0.210 -n.13p 0.29 -0.13 0.20 0.180

6and 4 9.300 0.620 0.055 0.025 0.033 0.056 0.323
0.21 0180 -p.138 0.25 -0.09 0.22 0.21

6ang ] 9.480 {.561 0.022 0.002 0.001 0.001 0.032

0.31 0.31 0.08 .93 ~5.28 5.7 5.87

* — ——r—

* Upper Values Represent Coherences ang
**Lower Vylues Represent Migge Angles jn Months.m’“mvsm




coherence values in the absence of the above two key factors (proper number of
lags and Hamming-Tukey weights).

4) Using synthetic time series coupled with the run test, Spearman’s T test, Cox and
Stuart tests, a conventional procedure of formulating a mathematical model can be
modified and Hlustrated for the atmospheric divergence (V+Q) time series of a large
castern region as shown by Shahane {1973).

5) As demonstrated in the previous seciions, synthetic lime series can be effectively
used in

a) detecting the crratic (or otherwise) behavior of the statistical parameters when
the basic data does not follow the basic assumptions underlying many advanced
and applied statistical techniques, and

b) increasing confidence in the final cstimates of statistical parameters (for
example, autocorrelation, spectral and cross-spectral parameters) of nonsta-
tionary hydrometeorological time series.

TABLE 5. Coherences of Residual Serics of 1
& Syntietic Time Senesgliln in Tdub e 1

Pair of Coherences® and Phase Angles®* for Six Lags
Synthetic .
Tine Series 0 1 2 3 . 4 5 6
AN Jand 2 0.527 0457 0.243 0.280 0.294 0429  0.185
0.07 0.06 -0.04 0.05 0.09 0.06 0.08
Jand § 0.542 0.506 0.370 0.462 0.386 0.554 . 0.257
0.03 0.03 0.000 0.020 0.03 003 . 0.03
Jand 4 0.533 0.497 0.384 0.505 0.442 0.611 0.271
0.00 0.00 .02 0.00 0.07 0.08 0.07
Jand 8 1.065 0.384 0.389 0390 0.589 0439 0.741
=003 -0.01 0.01 -0.07 0.00 0.00 0.00
4and 2 0.495 0.415 0.221 0.277 ¢.301 0.446 0.190
0.07 0.07 -0.02 0.05 0.00 -0.05 ~0.05
4and 5 0.511 0.460 0.337 0.451 0.395 0.588 0.268
0.02 0.03 0.03 0.01 -0.04 -0.05 -0.04
4and 1 0.002 0.002 0.000 0.000 0.000 0.004 0.005
213 327 -543 3.61 5.99 5.78 5.87
" 2und s 0.500 0421 0.215 0256 0.266 0411 0.183
-0.04 -0.03 0.40 -{.03 0.00 0.00 0.00
6 and 2 0.960 0.311 0.229 0,217 0.404 0.325 0.517
0.09 0.67 -0.07 0.15 0.06 0.02 0.02
6 and 5 1.009 0,350 0.347  0.350 0:528 0.431 0.732
0.06 0.05 -0.02 0.10 - 0.03- 0.03 0.03
6 and 4 (989 0.343 0.356 0.380 0.603 1472 0.766
(L4 0.02 -0.05 0.08 0.06 0.08 0.07
Gand 1 0.005 0.001 0.000 0.000 ° 0.000 0.003 0.012

215 3.27 =5.29 - 4.12 -5.73 5.98 5.99

* U}iper Values Represent Coherences and

**Lower Values Represent Phase Angles in Monthﬁfeﬁ&*ﬂthﬂiﬂ-ﬁiﬁs-&uiu—%%.
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