## FLOW RATING ANALYSIS FOR PUMP STATION G507



By Sheng Yue & Emile Damisse

May 2012

#### SFWMD-HIST-023

Hydraulic Rating Analysis Hydro Data Management Section Infrastructure Management Bureau South Florida Water Management District



FLOW RATING ANALYSIS FOR PUMP STATION G507

# **TABLE OF CONTENTS**

| TABLE OF CONTENTS                          | .I       |
|--------------------------------------------|----------|
| LIST OF FIGURES                            | Π        |
| LIST OF TABLES                             | Π        |
| ACKNOWLEDGEMENTI                           | Π        |
| DEFINITIONSI                               | V        |
| EXECUTIVE SUMMARY                          | .1       |
| 1.0 INTRODUCTION                           | .2       |
| 1.1 BACKGROUND<br>1.2 OBJECTIVES AND SCOPE | .2<br>.3 |
| 2.0 STATION DESIGN                         | .3       |
| 2.1 PUMP PERFORMANCE CURVE                 | .4       |
| 3.0 RATING ANALYSIS                        | .5       |
| 4.0 CONCLUDING REMARKS                     | .8       |
| REFERENCES                                 | .9       |



FLOW RATING ANALYSIS FOR PUMP STATION G507

# LIST OF FIGURES

| FIGURE 1. LOCATION MAP OF PUMP STATION       | 2 |
|----------------------------------------------|---|
| FIGURE 2. PUMP STATION INLET                 | 3 |
| FIGURE 3. PUMP STATION OUTLET                | 4 |
| FIGURE 4. PUMP PERFORMANCE CURVE             | 4 |
| FIGURE 5. FLOW RATING CURVE FOR PUMP STATION | 7 |

## LIST OF TABLES

| TABLE 1. DESCRIPTION FOR PUMP STATION                                | 3 |
|----------------------------------------------------------------------|---|
| TABLE 2. FLOW LOSS COEFFICIENTS                                      | 6 |
| TABLE 3. TDH, HEAD LOSS, TSH, PUMP SPEED AND DISCHARGE RELATIONS     | 6 |
| TABLE 4. FLOW RATING COEFFICIENTS                                    | 7 |
| TABLE 5. COMPARISON BETWEEN COMPUTED FLOWS AND THOSE FROM PUMP CURVE | 8 |



# ACKNOWLEDGEMENT

The authors wish to express their appreciation to Daniel Kelley, Matthew Alexander, and Tracey Piccone for collecting the pump performance curve and pump design information for this rating analysis.



FLOW RATING ANALYSIS FOR PUMP STATION G507

# DEFINITIONS

#### Acronyms

| AARE  | Average absolute relative error         |
|-------|-----------------------------------------|
| ARE   | Absolute relative error                 |
| SFWMD | South Florida Water Management District |
| STA   | Stormwater treatment area               |
| TDH   | Total dynamic head                      |
| TSH   | Total static head                       |
|       |                                         |



FLOW RATING ANALYSIS FOR PUMP STATION G507

## **EXECUTIVE SUMMARY**

Pump Station G507 houses one pump unit with flow capacity of 51.3 cfs. This report summarizes a flow rating analysis for Pump Station G507 based on the corresponding pump performance curve. The developed rating equation will be used to compute flow through the pump station.



## 1.0 INTRODUCTION

### 1.1 Background

Pump Station G507 has a single 36-inch diameter pump with a 125-Hp diesel powered engine, has a flow capacity of 51.3 cfs. The purpose of the pump station is to provide water supply to the STA by moving water from the STA-5 discharge canal into Cell 1B during periods of drought. Supplemental water entering STA-5 Cell 1B may be passed into Cell 2B via the G-345 Structure. The structure is located at the north east corner of STA-5, in Hendry County, as shown in **Figure 1**.



Figure 1. Location Map of Pump Station G507

The pump at Pump Station G507 is a manually-operated pump, with an access platform and a metal roof. Clewiston Field Station serves to operate the pump. Headwater and tailwater data are obtained from station G-344A approximately 100 yards south of G507.



## **1.2** Objectives and Scope

We will conduct a rating analysis to develop a flow rating equation for Pump Station G507 to compute flow through the station.

## 2.0 STATION DESIGN

Table 1 presents more detailed description for the station. Figure 2 shows the pump inlet and Figure 3 the pump outlet.

| Item                                         | Description |
|----------------------------------------------|-------------|
| Number of pumps                              | 1           |
| Design pump capacity (cfs)                   | 51.3        |
| Engine motor horsepower (HP)                 | 125         |
| Design motor speed (rpm)                     | 1800        |
| Pump Diameter (in)                           | 36          |
| Design Pipe invert Elevation (ft, NGVD)      | 14.3        |
| Pump total length from inlet to out let (ft) | 106         |
| Gearbox Type & Model                         | Belt Driven |
| Gearbox ratio                                | 3.27 : 1.0  |
| Shut off HW Elevation (ft, NGVD)             | 10.0        |

#### Table 1. Description for Pump Station G507



Figure 2. Pump Station Inlet



#### FLOW RATING ANALYSIS FOR PUMP STATION G507



Figure 3. Pump Station Outlet

## 2.1. Pump Performance Curve for G507

The manufacturer provides the pump performance curve for Pump Station G507, as shown in Figure 4.



Figure 4. Pump Performance Curve for Pump Station G507



## 3.0 RATING ANALYSIS

We will develop a Case 8 flow rating equation for Pump Station G507 based on the factory pump performance curve. Case 8 rating equation is developed using dimensional analysis and the pump affinity laws. This conventional rating equation represents all the possible cases, as documented in Damisse (2001) and Imru and Wang (2003). Rating equation below shows the Case 8 flow rating equation.

$$Q = A \left(\frac{N}{No}\right) + BH^{c} \left(\frac{No}{N}\right)^{2C-1}$$
(1)

$$H = \max\{CL, TW\} - HW \tag{2}$$

Where

| <i>Q</i> :                         | Discharge in cfs;                                                                           |
|------------------------------------|---------------------------------------------------------------------------------------------|
| <i>H</i> :                         | Total static head (TSH);                                                                    |
| <i>N</i> :                         | Pump engine speed in rpm;                                                                   |
| No:                                | Design pump engine speed in rpm (=1800 rpm);                                                |
| <i>A</i> , <i>B</i> and <i>C</i> : | Regression coefficients determined through regression analysis (A $>$ 0, B $<$ 0, and C $>$ |
|                                    | 1.0).                                                                                       |
| CL:                                | Discharge pipe outlet centerline elevation;                                                 |
| TW:                                | Tailwater elevation;                                                                        |
| HW:                                | Headwater elevation.                                                                        |

The H versus Q relationship can be estimated by subtracting the total head losses through the intake and discharge works from total dynamic head (TDH) on the pump performance curve. We will then conduct a non-linear regression analysis using SAS NLIN function to determine the coefficients in the above equation.

We computed TSH by subtracting total head loss from TDH. The total head loss through the pump includes friction loss  $(h_f)$ , minor loss  $((h_m))$ , and head loss through the flap gate  $(h_G)$  at the outlet of the pipe. We estimate friction and minor head losses using the following equations.

$$h_f = \frac{fLv^2}{2Dg} \tag{3}$$

$$h_m = K \frac{v^2}{2g} \tag{4}$$

Where

f – Friction coefficient;

- K Total minor loss coefficient;
- D Pipe diameter (ft);
- L Pipe total length (ft);
- v Flow velocity (ft/s);
- g Acceleration of gravity, 32.2 ft/s<sup>2</sup>

The head loss through the flap gate is estimated by the following equation (See <u>www.hydrogate.com</u>)



$$h_G = \left(\frac{4v^2}{g}\right) e^{\left(\frac{-1.15v}{\sqrt{D}}\right)} \tag{5}$$

The total head loss through the pump is the sum of friction loss, minor loss, and flap gate loss. **Table 2** presents the minor loss coefficients associated with pump intake, bend, and outlet, and friction coefficient for computing friction loss through the pump.

| Los                       | Value                       |       |
|---------------------------|-----------------------------|-------|
| Minor Loss<br>Coefficient | Intake Bell                 | 0.050 |
|                           | Bend                        | 0.236 |
|                           | Pipe Exit - Projecting Exit | 1.000 |
|                           | Total                       | 1.286 |
| Friction coefficient      |                             | 0.015 |

 Table 2. Flow Loss Coefficients

**Table 3** presents TDH from the pump performance curve, total head loss, TSH, and pump speed vs. Q values for Pump Station G507. **Table 4** provides the flow rating equation coefficients of Eq. (1), which were estimated by conducting nonlinear regression analysis using SAS NLIN function with No = 1800 rpm.

| Flow  |        | трн  | Pump           | Engine         | Total             | TSH   |
|-------|--------|------|----------------|----------------|-------------------|-------|
| GPM   | CFS    | (ft) | speed<br>(rpm) | speed<br>(rpm) | head<br>loss (ft) | (ft)  |
| 15000 | 33.421 | 8.8  | 575            | 1880           | 0.751             | 8.049 |
| 15500 | 34.535 | 8.3  | 575            | 1880           | 0.789             | 7.511 |
| 16000 | 35.649 | 7.8  | 575            | 1880           | 0.829             | 6.971 |
| 16500 | 36.763 | 7.2  | 575            | 1880           | 0.870             | 6.330 |
| 17000 | 37.877 | 6.6  | 575            | 1880           | 0.912             | 5.688 |
| 17500 | 38.991 | 6.0  | 575            | 1880           | 0.959             | 5.041 |
| 18000 | 40.105 | 5.2  | 575            | 1880           | 1.009             | 4.191 |
| 18500 | 41.219 | 4.4  | 575            | 1880           | 1.060             | 3.340 |
| 19000 | 42.334 | 3.6  | 575            | 1880           | 1.112             | 2.488 |
| 19500 | 43.448 | 2.7  | 575            | 1880           | 1.166             | 1.534 |
| 20000 | 44.562 | 1.8  | 575            | 1880           | 1.222             | 0.578 |

| Table 3. TDH, Head Loss, TSH, | <b>Pump Speed and Discharge Relations</b> |
|-------------------------------|-------------------------------------------|
| for the Pumps a               | t Pump Station G507                       |



| Rating Coefficient | Estimate | Approximate Lower 95%<br>Confidence Limit | Approximate Upper 95%<br>Confidence Limit |
|--------------------|----------|-------------------------------------------|-------------------------------------------|
| А                  | 42.785   | 42.406                                    | 43.165                                    |
| В                  | -0.689   | -0.881                                    | -0.497                                    |
| С                  | 1.371    | 1.240                                     | 1.501                                     |

 Table 4. Flow Rating Coefficients for Pump Station G507

**Figure 5** illustrates the developed rating curve for the pumps at Pump Station G507. The rating curve with N = 1880 rpm illustrates that the rating curve from the developed rating equation well fits the discharges from the pump performance curve. **Table 5** presents the absolute relative errors between calculated flows and the flows from the pump performance curve, and the AARE between them is 0.3%. These results indicate that the developed rating well represents the relationship between total static head and discharge obtained from the manufactory pump performance curve. The rating curve corresponding to the design pump engine speed of 1800 rpm is also presented in **Figure 5**.



Figure 5. Flow Rating Curve for Pump Station G507



FLOW RATING ANALYSIS FOR PUMP STATION G507

#### **Discharge from Pump engine Discharge from** Absolute Relative TSH (ft) **Rating Equation** speed (rpm) pump curve (cfs) Error (%) (cfs) 1880 33.5 33.4 0.4 8.0 7.5 1880 34.6 34.5 0.0 7.0 35.5 35.6 0.3 1880 1880 36.7 36.8 0.3 6.3 5.7 1880 37.8 37.9 0.3 5.0 1880 38.8 39.0 0.4 4.2 1880 40.1 40.1 0.1 3.3 1880 41.3 41.2 0.3 1880 42.5 42.3 0.3 2.5 43.5 43.4 0.2 1.5 1880 0.6 1880 44.4 44.6 0.4 Average Absolute Relative Error (AARE) 0.3

#### Table 5. Comparison between Computed Flows and Those from the Pump Curve

## 4.0 CONCLUDING REMARKS

We conducted rating analysis for Pump Station G507 based on the pump performance curve. **Table 4** presents the coefficients of the flow rating equation for Pump Station G507. The flow rating equation needs to be calibrated, and to be potentially improved based on future flow measurements.



# REFERENCES

Damisse, E. 2001. Flow rating development for G335 Pump Station in STA-2. Hydrologic Data Management Division, South Florida Water Management District, West Palm Beach, Florida.

Imru, M. and Y. Wang. 2003. Flow Rating Analysis Procedures for Pumps. Technical Publication EMA # 413, South Florida Water Management District, West Palm Beach, Florida.