FLOW RATING ANALYSIS FOR PUMP STATION G700

By Sheng Yue & Emile Damisse

August 2012

SFWMD-HIST-028

Hydro Data Management Section Infrastructure Management Bureau Operations, Engineering and Construction Division South Florida Water Management District

FLOW RATING ANALYSIS FOR PUMP STATION G700

TABLE OF CONTENTS

TABLE OF CONTENTS	, I
LIST OF FIGURES	II
LIST OF TABLES	П
ACKNOWLEDGEMENTI	П
DEFINITIONSI	v
EXECUTIVE SUMMARY	.1
1.0 INTRODUCTION	.2
1.1 BACKGROUND 1.2 OBJECTIVES AND SCOPE	.2 .3
2.0 STATION DESIGN	.3
2.1 PUMP PERFORMANCE CURVE	.4
3.0 RATING ANALYSIS	.5
4.0 CONCLUDING REMARKS	.8
REFERENCES	1

FLOW RATING ANALYSIS FOR PUMP STATION G700

LIST OF FIGURES

FIGURE 1. LOCATION MAP OF PUMP STATION	2
FIGURE 2. PUMP STATION INLET	3
FIGURE 3. PUMP STATION OUTLET	4
FIGURE 4. PUMP PERFORMANCE CURVE	4
FIGURE 5. FLOW RATING CURVE FOR PUMP STATION	7

LIST OF TABLES

TABLE 1. DESCRIPTION FOR PUMP STATION	3
TABLE 2. FLOW LOSS COEFFICIENTS	6
TABLE 3. TDH, HEAD LOSS, TSH, PUMP SPEED AND DISCHARGE RELATIONS	6
TABLE 4. FLOW RATING COEFFICIENTS	7
TABLE 5. COMPARISON BETWEEN COMPUTED FLOWS AND THOSE FROM PUMP CURVE	8

FLOW RATING ANALYSIS FOR PUMP STATION G700

ACKNOWLEDGEMENT

The authors wish to express their appreciation to Brian Rhoades, Arlindo Dias for collecting the pump performance curve and pump design information for this rating analysis.

FLOW RATING ANALYSIS FOR PUMP STATION G700

DEFINITIONS

Acronyms

Average absolute relative difference
Absolute relative error
South Florida Water Management District
Stormwater treatment area
Total dynamic head
Total static head

FLOW RATING ANALYSIS FOR PUMP STATION G700

EXECUTIVE SUMMARY

Pump Station G700 houses two identical pump units with flow capacity of 40 cfs. This report summarizes a flow rating analysis for Pump Station G700 based on the corresponding pump performance curve. The developed rating equation will be used to compute flow through the pump station.

South Florida Water Management District FLOW RATING ANALYSIS FOR PUMP STATION G700

1.0 INTRODUCTION

1.1 Background

Pump Station G700 has two identical electric 24-inch pumps with a 75 Hp electric motor engine with flow capacity of 40 cfs. The purpose of the pump station is to prevent flooding in the residential area during heavy storm by pumping excess surface water to Packingham Slough. The pump station is located near the intersection between SR 60 and River Reanch, as shown in **Figure 1**.

Figure 1. Location Map of Pump Station G700

1.2 Objectives and Scope

We will conduct a rating analysis to develop a flow rating equation for Pump Station G700 to compute flow through the station.

FLOW RATING ANALYSIS FOR PUMP STATION G700

2.0 STATION DESIGN

Table 1 presents more detailed description for the station. Figure 2 shows the profile of the pump station.

Item	Description
Number of pumps	2
Pump design capacity (cfs)	40
Engine motor horsepower (HP)	75
Design motor speed (rpm)	705
Design head (ft))	5.53
Outlet discharging pipe diameter (ft)	24
Outlet discharging pipe invert elevation (ft, NGVD)	53.25
Shut off head water elevation/Minimun upstream water elevation (ft, NGVD)	48.83
Pump operation flow elevation (ft, NGVD)	55

Table 1. Description for Pump Station G700

Figure 2. Plan view of Pump Station G700

FLOW RATING ANALYSIS FOR PUMP STATION G700

Figure 3. Profile view of Pump Station G700

2.1. Pump Performance Curve for G700

The manufacturer provides the pump performance curve for Pump Station G700, as shown in Figure 4.

FLOW RATING ANALYSIS FOR PUMP STATION G700

Figure 4. Pump Performance Curve for Pump Station G700

South Florida Water Management District FLOW RATING ANALYSIS FOR PUMP STATION G700

3.0 RATING ANALYSIS

We will develop a Case 8 flow rating equation for Pump Station G700 based on the factory pump performance curve. Case 8 rating equation is developed using dimensional analysis and the pump affinity laws. This conventional rating equation represents all the possible cases, as documented in Damisse (2001) and Imru and Wang (2003). Rating equation below shows the Case 8 flow rating equation.

$$Q = A \left(\frac{N}{No}\right) + BH^{c} \left(\frac{No}{N}\right)^{2C-1}$$
(1)

$$H = \max\{CL, TW\} - HW \tag{2}$$

Where

Q:	Discharge in cfs;
H:	Total static head (TSH);
<i>N</i> :	Pump engine speed in rpm;
No:	Design pump engine speed in rpm (=1800 rpm);
<i>A</i> , <i>B</i> and <i>C</i> :	Regression coefficients determined through regression analysis (A > 0 , B < 0 , and C $>$
	1.0).
CL:	Discharge pipe outlet centerline elevation;
TW:	Tailwater elevation;
HW:	Headwater elevation.

For an electric pump with constant speed, $N = N_{a}$, and Equation (1) becomes

$$Q = A + BH^{C}$$
(3)

The H versus Q relationship can be estimated by subtracting the total head losses through the intake and discharge works from total dynamic head (TDH) on the pump performance curve. We will then conduct a non-linear regression analysis using SAS NLIN function to determine the coefficients in the above equation.

We computed TSH by subtracting total head loss from TDH. The total head loss through a pump includes friction loss and minor losses. Friction head loss was ignored here since the discharge pipe is short. **Table 2** presents the minor loss coefficients for pump inlet, bend, and outlet. We take the head loss of flap gate 0.1 ft.

Lo	Value	
Minor Loss Coefficient	Intake Bell	0.050
	Bend	0.236
	Pipe Exit - Projecting Exit	1.000
	Total	1.286

Table 2. Minor Loss Coefficients

Table 3 presents TDH from the pump performance curve, total head loss, TSH, and pump speed vs. Q values for Pump Station G700. **Table 4** provides the flow rating equation coefficients of Eq. (3), which were estimated by conducting nonlinear regression analysis using SAS NLIN function.

Fl	ow		Total head	
GPM	CFS	TDH (ft)	loss (ft)	TSH (ft)
18000	40.105	9.105	3.358	5.747
18100	40.328	9.068	3.394	5.674
18200	40.551	9.041	3.430	5.610
18300	40.774	9.000	3.467	5.533
18400	40.997	8.959	3.504	5.455
18500	41.219	8.918	3.541	5.377
18600	41.442	8.886	3.578	5.308
18700	41.665	8.841	3.616	5.225
18800	41.888	8.805	3.654	5.151
18900	42.111	8.759	3.692	5.068
19000	42.334	8.718	3.730	4.989
19100	42.556	8.664	3.768	4.896
19200	42.779	8.623	3.806	4.816
19300	43.002	8.564	3.845	4.718
19400	43.225	8.509	3.884	4.625
19500	43.448	8.441	3.923	4.518
19600	43.670	8.364	3.963	4.401
19700	43.893	8.277	4.002	4.275
19800	44.116	8.182	4.042	4.140
19900	44.339	8.059	4.082	3.977
20000	44.562	7.909	4.122	3.787
20100	44.784	7.732	4.162	3.570
20200	45.007	7.523	4.203	3.320
20300	45.230	7.318	4.243	3.075

Table 3. TDH, Head Loss, TSH, Pump Speed and Discharge Relations for the Pumps at Pump Station G700

Rating Coefficient	Estimate	Approximate Lower 95% Confidence Limit	Approximate Upper 95% Confidence Limit
А	45.8721	45.7576	45.9866
В	-0.0112	-0.0143	-0.00803
С	3.5800	3.4276	3.7325

Table 4. Flow Rating Coefficients for the Pumps at G700

Figure 5 illustrates the developed rating curve for the pumps at Pump Station G700. The flows calculated from the developed rating equation well fits the discharges from the pump performance curve. **Table 5** presents the absolute relative errors between calculated flows and the flows from the pump performance curve, and the AARD between them is 0.081%. These results indicate that the developed rating well represents the relationship between total static head and discharge obtained from the manufactory pump performance curve.

Figure 5. Flow Rating Curve for Pump Station G700

TSH (ft)	Discharge from Rating Equation (cfs)	Discharge from pump curve (cfs)	Absolute Relative Difference (%)
5.747	40.010	40.105	0.237
5.674	40.273	40.328	0.138
5.610	40.496	40.551	0.137
5.533	40.755	40.774	0.046
5.455	41.009	40.997	0.029
5.377	41.253	41.219	0.081
5.308	41.462	41.442	0.047
5.225	41.704	41.665	0.093
5.151	41.911	41.888	0.056
5.068	42.135	42.111	0.058
4.989	42.339	42.334	0.014
4.896	42.570	42.556	0.031
4.817	42.756	42.779	0.053
4.718	42.980	43.002	0.052
4.625	43.179	43.225	0.107
4.518	43.395	43.448	0.121
4.401	43.617	43.670	0.122
4.275	43.840	43.893	0.121
4.140	44.060	44.116	0.126
3.977	44.303	44.339	0.081
3.787	44.555	44.562	0.014
3.570	44.806	44.784	0.048
3.320	45.050	45.007	0.095
3.075	45.247	45.230	0.038
Average Absolute Rela	ative Difference (AARD)		0.081

Table 5. Comparison between Computed Flows and Those from the Pump Curve

South Florida Water Management District FLOW RATING ANALYSIS FOR PUMP STATION G700

4.0 CONCLUDING REMARKS

We conducted rating analysis for Pump Station G700 based on the pump performance curve. **Table 4** presents the coefficients of the flow rating equation for Pump Station G700. The flow rating equation needs to be calibrated, and to be potentially improved based on future flow measurements.

REFERENCES

Damisse, E. 2001. Flow rating development for G335 Pump Station in STA-2. Hydrologic Data Management Division, South Florida Water Management District, West Palm Beach, Florida.

Imru, M. and Y. Wang. 2003. Flow Rating Analysis Procedures for Pumps. Technical Publication EMA # 413, South Florida Water Management District, West Palm Beach, Florida.