

## 2024 Aquifer Storage and Recovery (ASR) Peer Review Panel Workshop

Elizabeth Caneja, Lead Project Manager July 10, 2024



#### **Welcome/Workshop Logistics**

- Welcome/Meeting Purpose and Objectives
- Introductions
  - Panel members
  - ASR team members
- Workshop/Meeting Format
  - July 9<sup>th</sup>, 9am 3pm (Site Visit for Panelists and Project Team)
  - July 10<sup>th</sup>, 8:30am 4:15pm (Zoom Meeting for Panelists, Project Team, and Members of the Public)
  - Panel discussion throughout the day
  - Public comment period prior to lunch and prior to closing remarks



#### **Workshop Agenda**

#### 2024 AQUIFER STORAGE AND RECOVERY (ASR) SCIENCE PLAN PEER REVIEW PANEL AGENDA

July 10, 2024 8:30 AM

This meeting will be conducted via Zoom, a media technology free for the public to use

#### Zoom Link: https://sfwmd.link/4e9da8g

- 1. Welcome and Opening Remarks Liz Caneja, Lead Project Manager, SFWMD
- Continuous Core and Aquifer Pump Test Results Rick Cowles, P.G., Principal Senior Hydrogeologist, Stantec
- Geochemistry of C38s, L63N, and L63 Continuous Cores Jamie MacDonald, Ph.D., Professor of Geology, Florida Gulf Coast University
- Break
- SFWMD Okeechobee 2D Seismic Program Overview John Jansen, P.G., P.Gp., Ph.D., Principal Geophysicist/Hydrogeologist, Collier Geophysics, LLC
- Multi-Well Assessment of Fracture Porosity of the Floridian Aquifer System in Support of Future ASR Wells in Northern Lake Okeechobee - Kevin Cunningham, Ph.D., and Victor Flores, Research Hydrogeologists, United States Geological Survey (USGS) -Caribbean - Florida Water Science Center
- Characterization of Microbial and Geochemical Processes that Contribute to Nutrient Reduction and Potential Clogging - John Lisle, Ph.D., Microbial Ecologist, USGS - St. Petersburg Coastal and Marine Science Center

- 9. Public Comment
- Quantitative Ecological Risk Assessment Plan Next Steps Joseph Allen, Senior Wildlife Biologist/Ecological Risk Assessor, Formation Environmental
- ASR Ecological Risk Assessment Pre-Operational Ecological Monitoring Year 1 Results - Jennifer Mathia, Principal Scientist, Environmental Consulting and Technology
- 12. Break
- Lake Okeechobee Watershed Restoration Project (LOWRP) ASR Treatment Technology - Treatment System Update - Heath Wintz, P.E., Project Technical Lead, Stantec
- Engineer Research and Development Center (ERDC) and LOWRP-ASR Studies Update - Matthew Farthing, Ph.D. (Project Lead), Mandy Michalsen, Ph.D. (Task A Lead), and Martin Page, Ph.D. (Task E Lead), USACE-ERDC
- 17. Panel Discussion
- Public Comment
- Closing Remarks and Expected Progress Over the Next Two Years Anna Wachnicka, Ph.D., Principal Scientist/ASR Science Plan Project Manager, SFWMD
- 18. Adjourn

Panel Discussion

# LOWRP Revised Recommended Plan (Alt ASR)



## **ASR Science Plan**

#### **Purpose:**

- Address the NRC uncertainties with ASR
- Guide the ASR phased implementation with science
- Provide annual or as needed update on the work progress
  - Workshops held annually to biannually to discuss the studies and findings
  - Update prepared with guidance from an independent peer review panel

#### ≻Status:

sfwm

- Draft 2022 ASR Science Plan was posted for public review in October 2022
- The next version of the plan will be referred to as ASR Science Plan Update Version 2

#### www.sfwmd.gov/asr







USACE ERDC Membrane





Ecological Studies: Periphytometer and Plate retrieved from C385 site L63N Drilling Site C59 Continuous Core Material, 1820-1830 feet below land surface





Aquifer Pump Test at C38S

C38S Drill Site for Test Wells

# **USACE Identified Uncertainties with ASR**

- Water Quality Uncertainty
  Construction Cost Uncertainty
  O&M Cost Uncertainty
- USACE ERDC Research:
  - Executed agreement to prepare a SOW to begin addressing the identified major uncertainties
  - ERDC Staff has collected cores for water quality studies
  - Various studies will take several months to years to complete



# **ASR Construction Progress**

- **ASR Construction Progress from 2020-2024:** 
  - Completed Continuous Cores at C38S, L63N, L63S and C59
  - Completed Test Wells 1 & 2 at C38S and C38N
  - Completed Aquifer Pump Tests for Test Wells at C38S and C38N
  - Currently Drilling Test Wells 1 & 2 at L63N
  - Design is underway for Demonstration Facility









#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT

### **Treatment Technology Evaluation to Meet Drinking Water Standards**



Water treated to meet primary and secondary drinking water criteria

Proof-of-Concept was conducted to determine suitable technology to meet permitting requirements

Several technologies were tested including ceramic membranes, polymeric membranes, and mediation filtration + UV





## Schedule to Update the ASR Science Plan

| Studies                                   |  | 2023 |     |     |     |     |      |     |     |     |     | 2024 |     |     |     |     |     |     |      |     |     |     |     |     |
|-------------------------------------------|--|------|-----|-----|-----|-----|------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|
|                                           |  | Feb  | Mar | Apr | May | Jun | July | Aug | Sep | Oct | Nov | Dec  | Jan | Feb | Mar | Apr | May | Jun | July | Aug | Sep | Oct | Nov | Dec |
| USGS Fracture Porosity Analysis           |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| USGS Bioclogging Research                 |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| FGCU Geochemistry                         |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| Collier Geophysics – Seismic Surveys      |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| Regional Fracture Analysis (Stantec)      |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| ECO Monitoring - C-38 Canal/N Lake O.     |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| ERA Work Plan                             |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| ERDC Studies                              |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| Groundwater Modeling                      |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| Surface Water Mixing Zone Modeling        |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| Radium in Groundwater Survey              |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| ASR Science Plan Updates, and Internal    |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| and Inter-Agency Reviews                  |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| Public ASR Panel Workshop                 |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| Panel Report Development                  |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| Panel Report Reviews                      |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| ASR Science Plan Final Revisions, Reviews |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |
| & Publication                             |  |      |     |     |     |     |      |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |     |     |

\*\*\*July 9 and 10, 2024 Field Trip and Public Workshop\*\*\*

Annual or final report incuded in ASR Science Plan

ASR Science Plan Work in Progress

No Report/Update Only at the Public Workshop



| Status: April, 2024                                                                           | 2024 ASR Science Plan Report Card |    |          |          |         |         |           |          |    |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------|----|----------|----------|---------|---------|-----------|----------|----|--|
| National Research Council Uncertainties and ASR Peer Review Panel Recommendations             | 10                                | 30 | *        | Progress | Towards | Adressi | ng the To | pic      | 00 |  |
| 2015 National Research Council Uncertainties                                                  | 10                                | 20 | 30       | 40       | 50      | 60      | 70        | 80       | 90 |  |
| local scale information on attributes of APP7                                                 |                                   |    |          |          |         |         |           |          |    |  |
| Recearch obosphorus removal mechanisms                                                        |                                   |    |          |          |         |         |           | <u> </u> | -  |  |
| Research pathoren inactivation in the anuifer                                                 |                                   |    |          |          |         |         |           |          |    |  |
| Couple pathogen inactivation with groundwater travel times                                    |                                   |    |          |          |         |         |           |          |    |  |
| Ectablish huffar maa                                                                          |                                   |    | -        |          |         |         |           | -        | -  |  |
| Arsanis transport within anuifer using huffer zone                                            | -                                 |    | <u> </u> |          |         |         |           | <u> </u> | -  |  |
| Ruffer rome usame to reduce sulfate concentrations                                            | <u> </u>                          |    | -        |          |         |         |           | -        |    |  |
| Este of culture is recovered water to form mathematicus                                       | -                                 |    | -        |          |         |         | -         | -        | _  |  |
| Face of sumate in recovered water to form methylmercury                                       |                                   |    | -        |          |         | -       | -         | -        | _  |  |
| Local scale model for neterogeneity/anisotropy/tracturing/travel times                        |                                   |    |          |          |         | -       | -         | -        |    |  |
| Pretreatment technologies to attenuate arsenic mobilization                                   |                                   |    |          |          |         | -       | -         | -        | _  |  |
| Analysis of weilfield cluster for spacing and optimal recovery efficiency                     |                                   |    | _        |          |         | -       |           | -        | -  |  |
| Anisotropy analysis used for orienting wells                                                  |                                   |    |          |          |         |         |           | -        |    |  |
| Cross-well tomography and geophysics                                                          |                                   |    |          |          |         |         |           | <u> </u> |    |  |
| Locate clusters near large water bodies                                                       |                                   |    |          |          |         |         |           |          |    |  |
| Examine technologies to meet regulatory requirements                                          |                                   |    |          |          |         | -       |           |          |    |  |
| Variability of gross alpha and radium in recovered water                                      |                                   |    |          |          |         | -       |           | -        |    |  |
| Examine source water effects on redox evolution of aquifer                                    |                                   |    | -        |          |         |         |           | -        |    |  |
| improve/extend cycle tests                                                                    |                                   |    |          |          |         |         |           |          |    |  |
| Operate multi-well pairs and clusters                                                         |                                   |    |          |          | _       |         |           |          |    |  |
| Continue chronic toxicity testing at multiple ASR locations                                   |                                   |    |          |          |         |         |           |          |    |  |
|                                                                                               |                                   |    |          |          |         |         |           |          |    |  |
| Long-term ecological monitoring and bioconcentration studies, community-level effects         |                                   |    |          |          |         |         |           |          |    |  |
| Probabilistic, quantitative ecological risk assessment                                        |                                   |    |          |          |         |         |           |          |    |  |
| 2021 ASR Peer Review Panel Recommendations                                                    |                                   |    |          |          |         |         | _         |          | _  |  |
| Develop ASR Programmatic Quality Assurance Plan                                               |                                   |    |          |          |         |         |           |          |    |  |
| Data Storage, Management, and Public Access                                                   |                                   |    | -        |          |         |         |           |          |    |  |
| 2022 ASR Peer Review Panel Recommendations                                                    | _                                 |    |          |          |         |         |           |          |    |  |
| Spacers in core storage                                                                       |                                   |    |          |          |         |         |           |          |    |  |
| Core geochemical analysis                                                                     |                                   |    |          |          |         |         |           |          |    |  |
| Local-scale groundwater model layers development                                              |                                   |    |          |          |         |         |           |          |    |  |
| Hydrologic modeling to include fracture and faulting patterns to determine optimal well       |                                   |    |          |          |         |         |           |          |    |  |
| spacing                                                                                       |                                   |    |          |          |         |         |           |          |    |  |
| Add new Panel member with strong background in water treatment and economics of water         |                                   |    |          |          |         |         |           |          |    |  |
| treatment                                                                                     |                                   |    |          |          |         |         |           |          |    |  |
|                                                                                               |                                   |    |          |          |         |         |           |          |    |  |
| Revisit point-of-compliance and reduced pretreatment options with regulatory agencies         |                                   |    |          |          |         |         |           |          |    |  |
| Implement incremental approach to design, construction, and operation of the                  |                                   |    |          |          |         |         |           |          |    |  |
| pretreatment of water to be stored                                                            |                                   |    |          |          |         |         |           |          |    |  |
|                                                                                               |                                   |    |          |          |         |         |           |          |    |  |
| Test other coagulants (e.g. ferrate) with media filtration as a potential pretreatment method |                                   |    |          |          |         |         |           |          |    |  |
|                                                                                               |                                   |    |          |          |         |         |           |          |    |  |
| Develop detailed plan of arsenic monitoring during all portions of the ASR operations         |                                   |    |          |          |         |         |           |          |    |  |
| Develop detailed water quality monitoring plan for cycle testing                              |                                   |    | -        |          |         |         |           |          | _  |  |
| Develop recovered water monitoring including arsenic, molybdenum and other ions that          |                                   |    |          |          |         |         |           |          |    |  |
| may be leached from the anufers during storage                                                |                                   |    |          |          |         |         |           |          |    |  |
| Expand inhtheoplaniton monitoring to the early dry season: characterize inhtheoplaniton       |                                   |    |          |          |         |         |           |          | -  |  |
| rick when impinement and entrainment most possible                                            |                                   |    |          |          |         |         |           |          |    |  |
| Establish a parteen to implement and update the EBA use Boundar anti-update inter-            |                                   |    |          |          |         |         |           |          |    |  |
| istaolish a system to implement and update the ERA; use Bayesian networks in a risk           |                                   |    |          |          |         |         |           |          |    |  |
| assessment framework; use separate but interconnected conceptual models; develop tiered       |                                   |    |          |          |         |         |           |          |    |  |
| assessments for focusing data collection efforts and needs from conservative to more          |                                   |    |          |          |         |         |           |          |    |  |
| realistic assumptions                                                                         |                                   |    |          |          |         |         |           |          |    |  |

#### Draft ASR Report Card ASR Science Plan V2

- NRC Uncertainties and Peer Review Panel Recommendations addressed :
  - Research of Pathogens
  - Completion of PQAP
  - Addition of ASR Peer Review Panel Member with expertise in Water Treatment
  - Testing of Coagulants for Water Treatment

\*Yellow indicates progress in 2020-2022 \*Green indicates progress in 2022-2024





#### www.sfwmd.gov/lowrp or www.sfwmd.gov/asr



# **Continuous Core and Aquifer Pump Test Results**



Lake Okeechobee Watershed Restoration Project (LOWRP): Aquifer Storage and Recovery (ASR) Well Program July 10, 2024



#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT

#### Generalized Hydrogeologic Section Review: Targeted Storage Zones

- Confinement above and below each storage zone – Hawthorn 450 to 500 feet thick.
- UFA upper flow zone is about 80 to 150 feet thick and contains the Suwannee LS and the upper most Ocala LS. The UFA flow zone can be highly productive
- Middle Confining Unit (MCU 1) approximately 500 to 600 feet thick
- Upper Avon Park Permeable Zone (APPZ) upper flow zone is approximately 80 to 120 feet thick – highly productive
- Confinement below the lower APPZ

|                  | Series      |                             | Geolo        | ogic Unit                 | Lithology                |                                                                                                                                                                                           | Approximate<br>Thickness<br>(feet bls) |                                                                 |               |
|------------------|-------------|-----------------------------|--------------|---------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|---------------|
|                  | N           | HOLOCENE AND<br>PLEISTOCENE |              | Undifferenti<br>Sedimetns | ated                     | Quartz sand; silt; clay; shell; limestone; sandy<br>shelly limestone                                                                                                                      | S                                      | 0 – 150                                                         |               |
| O<br>G<br>E<br>N |             | EARLY P                     |              | Hawthorn                  | Peace River<br>Formation | Unconsolidated sand; silt; clay; carbonates;<br>phosphatic sand                                                                                                                           | Interm<br>(Base of t                   | ediate Aquifer Confining Unit<br>the Hawthorn varies as much as | 150 - 520     |
| E                | E           |                             | IUCENE       | Arcadia<br>Formation      |                          | Limestone; sandy limestone; sand; interbedded                                                                                                                                             | :                                      | 150 feet between sites)                                         |               |
|                  |             | EAI<br>OLIGO                | RLY<br>DCENE | Suwanne                   | e Limestone              | Fossiliferous; calcarenitic; limestone; trace<br>phosphate, abundant Oster shell<br>Index Fossil: Rhyncholampas gouldii, Gagaria<br>mossomi, Dictyoconus cookei, Discorinopsis<br>gunteri |                                        | Floridan Aquifer Upper Flow<br>Zone<br>(40 to 80 feet thick)    | 520 - 800     |
|                  | Р           |                             | LATE         | Ocala L                   | imestone                 | Fossiliferous limestone; foraminiferous limestone;<br>trace phosphate Index<br>Fossil: Lepidocyclina ocalana; Amphistegina sp.,<br>Oligopygus wetherbyi                                   | Uppar                                  | MCU I<br>(800 to 900 feet thick)                                | 800 - 1,350   |
|                  | A<br>L      |                             |              |                           |                          |                                                                                                                                                                                           | Floridan<br>Aquifer                    | Avon<br>Park FM                                                 |               |
|                  | E<br>O<br>G |                             |              |                           |                          | Fine grained, micritic to sucrosic limestone;                                                                                                                                             | System                                 | APPZ Upper Flow Zone<br>(80 to 150 feet thick)                  | 1,350 - 1,430 |
| E<br>N<br>E      | E<br>N<br>E | EOCENE                      |              | Avon Par                  | k Formation              | dolomitic limestone; dolostone<br>Index Fossil: Dictyoconus americanus                                                                                                                    |                                        | Middle Semiconfining Unit<br>(MSCU)<br>(65 to 75 feet thick)    | 1,430 - 1,495 |
|                  |             |                             | MIDDLL       |                           |                          |                                                                                                                                                                                           |                                        | APPZ Lower Flow Zone<br>(50 to 155 feet thick)                  | 1,495 – 1,650 |
|                  |             |                             |              |                           |                          | Dolostone with evaporites                                                                                                                                                                 |                                        | MCU II<br>(250 to 350 ft thick)                                 | 1,650 - 1,900 |
|                  |             |                             |              | Old                       | lsmar                    | Evaporates with dolostone                                                                                                                                                                 | Lower<br>Floridan<br>Aquifer           | Lower Floridan Aquifer (LFA)<br>Flow Zone                       | 1,900 ->2,000 |



# **Continuous Coring Program**

## **Continuous Core Program**

- Advance continuous core hole to 2,000 feet bls – start coring at 500 feet bls. Approximately 6,100 feet of core collected so far.
- Conduct packer tests every 30 feet from the top of the Suwannee LS to the total depth – WQ, Isotopes, SC
- Run geophysical logs including OBI logs from the top of the Suwannee LS to total depth
- Core samples submitted for SEM, thin section, x-ray detraction analysis, and isotope analysis



### **Purpose of Continuous Core Program**

- Determine subsurface geologic and hydrogeologic conditions
- Determine water quality and specific capacity data every 30 feet
- Develop cores described in the field and detailed analysis -
  - Cores sent to Mineralogy Inc., Florida Gulf Coast University and USGS for detailed analysis
- Data used to determine if the site would support UFA and APPZ ASR wells and to develop ASR design documents



### **Continuous Cores**





### Continuous Cores



(Middle Confining Unit 1)

sfwmd.gov

Top of Upper APPZ (Storage Zone)

Presenter: Rick Cowles 18

~1,750 feet

#### **Optical Borehole Imager (OBI)**



## **Continuous Core Field Water Quality**





## **Continuous Core Specific Capacity**

Specific Capacity w/ Depth **C-38S Continuous Core**  
 Specific Capacity (gpm/ft of drawdown)

 3:00
 4:00
 5:00
 6:00
 7:00
 8:00

 Intermediate Confining Unit
 Specific Capacity w/ Depth Specific Capacity w/ Depth Specific Capacity w/ Depth L-63N Continuous Core C-59 Continuous Core L-63S Continuous Core 630 \$30 Intermediate Confining Unit Intermediate Confining Unit 680 680 **UFA Flow Zone** Intermediate Confining Unit 730 730 730 **UFA** Flow Zone 780 780 780 **UFA Flow Zone** 830 830 830 **UFA Flow Zone** 880 880 880 980 980 980 Middle Confining Unit I Middle Confining Unit I 1,030 1,030 **Middle Confining Unit I** 1,080 1,080 Middle Confining Unit I 1,120 1,130 1,130 1,180 1,180 1,180 1,230 1,230 1,230 1,280 1,280 1,280 **APPZ Upper Flow** 1.330 1,330 1,330 Zone **APPZ Upper Flow APPZ Upper Flow** 1,370 1,380 1.380 1,380 Zonë <sup>►</sup> 0 0 N Zone **APPZ Upper Flow Zone** 1,430 1,430 Middle Semi-Confining Unit 1,480 .480 Middle Semi-Confining Unit 1,480 Middle Semi-Confining Unit gpm/ft 1,530 1,530 1,530 **APPZ** Lower Flow **APPZ** Lower Flow 1,580 1,580 1,580 **APPZ Lower Flow** Zone Zone 1,630 1,630 1,630 Zone 1,680 1,680 1,680 1,730 1,730 1,730 1,780 .780 1,780 . Lower Confining Unit Lower Confining Unit 1,830 1.830 Lower Confining Unit 1,880 1.880 1.880 1,930 1,980 1,980 50.0 0.0 0.00 0 0.00 250.0 0.00 0.00 4.0 6.0 0.0 2.0 8 8 2.50 3.00 0.0 2.0 8.0 4.0 0.50 1.50 gpm/ft gpm/ft gpm/ff



USACE – Engineering Research and Development Center (ERDC) Low Oxygen Core Extraction











#### **ASR Test Well Construction - Casing Sizes**





## C-38S Aquifer Performance Testing

- September 18 23 (combined artesian)
- October 9 14 (APPZ pumping)
- October 16 21 (UFA pumping)
- October 23 28 (combined APPZ and UFA Pumping)
- 48-hour Recovery between tests

## C-38N Aquifer Performance Testing

- November 6 11 (combined artesian)
- November 27 December 2 (APPZ pumping)
- December 4 9 (UFA pumping)
- December 11 13 (combined APPZ and UFA Pumping test #1)
- December 18 23 (combined APPZ and UFA Pumping test #2)
- 48-hour Recovery between tests

30 Day Pre- APT Water Level Monitoring

Adding a 5-day APPZ Variable Rate Test to Evaluate Upconing in the APPZ

Aquifer Performance Testing -Analysis Methods

- Cooper-Jacob
  - Straight Line Solution (time and distance DD graphs)
- Theis
  - Confined, homogenous, isotropic
- Hantush-Jacob
  - Leaky confined aquifers
- Recovery Theis
- Data correction (APPZ)
  - USGS SeriesSEE Excel Add-in
- The purpose of the APTs is to determine hydraulic characteristics of the aquifers.
- The APT results are being used in the groundwater model to aid in predicative scenarios associated with the injection bubble geometry, recovery efficiency, and to identify potential upconing between aquifers.







C-38S APPZ MW: Barometric, Gravity, and Dry Tide



### **C-38S APT Results**





| Test                     | Pipe and<br>Orifice<br>Diameter (inch) | Height on<br>Manometer<br>(inch) | Pumping<br>Rate from<br>Orifice (gpm) | Pumping rate<br>from Flow<br>Meter (gpm) |
|--------------------------|----------------------------------------|----------------------------------|---------------------------------------|------------------------------------------|
| Artesian APPZ ASR        | 16 x 12                                | 16                               | 2,522                                 | 2,510                                    |
| Artesian UFA ASR         | 16 x 10.5                              | 12                               | 1,528                                 | 1,510                                    |
| Pumping APPZ ASR         | 16 x 12                                | 67.5                             | 5,180                                 | 5,270                                    |
| Pumping UFA ASR          | 16 x 12                                | 51.5                             | 4,524                                 | 4,620                                    |
| Combined Puming APPZ ASR | 16 x 12                                | 68                               | 5,199                                 | 5,295                                    |
| Combined Pumping UFA ASR | 16 x 12                                | 51.5                             | 4,524                                 | 4,620                                    |

Orifice Calculation

16 x 12 = 630.47 √h = gpm

16 x 10.5 = 441.03 √h = gpm

C-38S Aquifer Performance Testing

#### Pumping Rates

Cooper-Jacob Straight Line Method



sfwmd.gov

#### **Presenter: Rick Cowles**



#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT





#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT



**Presenter: Rick Cowles** 34

# C-38S APT Summary Table

| Aquifer Performance Test     | Aquifer | Transmissivity<br>(gpd/ft) | Transmissivity<br>(ft <sup>2</sup> /day) | Storage                 |
|------------------------------|---------|----------------------------|------------------------------------------|-------------------------|
| Combined Artesian - APPZ     | APPZ    | 831,600                    | 111,176                                  | $*1.4 \times 10^{-4}$   |
| APPZ Constant Rate APT       | APPZ    | 1,538,760                  | 205,717                                  | $*1.4 \times 10^{-4}$   |
| Combined Constant Rate - APT | APPZ    | 784,306                    | 104,854                                  | $*1.4 \times 10^{-4}$   |
|                              | Average | 1,051,555                  | 140,582                                  | $*1.4 \times 10^{-4}$   |
| Combined Artesian - UFA      | UFA     | 302,445                    | 40,434                                   | $1.38 \times 10^{-4}$   |
| UFA Constant Rate APT        | UFA     | 219,024                    | 29,281                                   | 2.87 x 10 <sup>-4</sup> |
| Combined Constant Rate - UFA | UFA     | 227,280                    | 30,385                                   | 6.49 x 10 <sup>-4</sup> |
|                              | Average | 249,583                    | 33,367                                   | $3.58 \times 10^{-4}$   |





# **C-38N Aquifer Performance Testing**


### **Aquifer Performance Testing (APT)**

| C-38N Flow and Pumping Rates    |                                        |                                                                 |       |                                          |  |  |  |  |  |
|---------------------------------|----------------------------------------|-----------------------------------------------------------------|-------|------------------------------------------|--|--|--|--|--|
| Test                            | Pipe and<br>Orifice<br>Diameter (inch) | Pipe and Height on<br>Orifice Manometer<br>Imeter (inch) (inch) |       | Pumping rate<br>from Flow<br>Meter (gpm) |  |  |  |  |  |
| Artesian APPZ ASR               | 16 x 12                                | 17.5                                                            | 2,637 | 2,510                                    |  |  |  |  |  |
| Artesian UFA ASR                | 10 x 2                                 | 7.375                                                           | 40    | 1,510                                    |  |  |  |  |  |
| Pumping APPZ ASR                | 16 x 12                                | 71.5                                                            | 5,331 | 5,550                                    |  |  |  |  |  |
| Pumping UFA ASR                 | 10 x 5                                 | 11.5                                                            | 318   | 303                                      |  |  |  |  |  |
| Combined Pumping APPZ ASR (1)   | 16 x 12                                | 71.5                                                            | 5,331 | 5,550                                    |  |  |  |  |  |
| Combined Pumping UFA ASR (1)    | 10 x 5                                 | 11.5                                                            | 318   | 303                                      |  |  |  |  |  |
| **Combined Pumping APPZ ASR (2) | 16 x 12                                | 71.5                                                            | 5,331 | 5,550                                    |  |  |  |  |  |
| **Combined Pumping UFA ASR (2)  | 10 x 5                                 | 11.5                                                            | 318   | 303                                      |  |  |  |  |  |

\*Pumping rate used in test analysis

\*\*Combined pumping test rerun because the generator failed approximately 72 hours into the test Orifice Calculation

16 x 12 = 630.47 √h = gpm

10 x 2 = 14.55 √h = gpm

10 x 5 = 93.9 √h = gpm



#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT

C-38N 5-Day APPZ Pumping APT

APPZ Wells

#### Drawdown vs Elapsed Time



Drawdown (feet)

sfwmd.gov

Presenter: Rick Cowles

38



Drawdown (feet)

sfwmd.gov

#### SOUTH FLORIDA

C-38N Preliminary APT Test Results

## C-38N APT Summary Table

| Well/Test                                               |      | *Distance (ft) | Flow or<br>Pumping Rate<br>(gpm) | Pre-Test<br>Water Level<br>(ft als) | Drawdown<br>(ft) | Specific<br>Capacity<br>(gpm/ft dd) | Transmissivity<br>(gpd/ft) | Transmissivity<br>(ft <sup>2</sup> /day) | Storage                 | Estimated Well<br>Efficiency<br>(percent) |
|---------------------------------------------------------|------|----------------|----------------------------------|-------------------------------------|------------------|-------------------------------------|----------------------------|------------------------------------------|-------------------------|-------------------------------------------|
| APPZ ASR Artesian                                       | an   | 1              | 2,637                            | 20.65                               | 4.0              | 664.23                              | 1,989,051                  | 265,916                                  |                         | 84                                        |
| HIF-42 LMZ (APPZ)                                       | tesi | 678            | 2,637                            | 20.50                               | 1.3              |                                     | 1,832,021                  | 244,923                                  | 7.7 x 10 <sup>-4</sup>  |                                           |
| DZMW-1 LMZ (APPZ)                                       | A A  | 1,028          | 2,637                            | 22.50                               | 1.4              |                                     | 1,832,021                  | 244,923                                  | 7.7 x 10 <sup>-4</sup>  |                                           |
| DZMW-2 LMZ (APPZ)                                       | IUE  |                | 2,637                            | 22.90                               | 0.1              |                                     | 1,998,905                  | 267,233                                  | 6.5 x 10 <sup>-4</sup>  |                                           |
| Distance Drawdown                                       | and  |                | 2,637                            |                                     |                  |                                     | 1,856,448                  | 248,188                                  | 1.12 x 10 <sup>-3</sup> |                                           |
| UFA ASR Artesian                                        | Zdd  |                | 40                               | 21.08                               | 9.8              | 4.08                                | 25,756                     | 3,443                                    |                         | 32                                        |
| HIF-42 UMZ (UFA)                                        | d AI | 678            | 40                               | 23.15                               | 1.2              |                                     | 24,558                     | 3,283                                    | 1.28 x 10 <sup>-4</sup> |                                           |
| DZMW-1 (UMZ UFA)                                        | oine | 1,028          | 40                               | 22.33                               | 1.1              |                                     | 14,667                     | 1,961                                    | 5.79 x 10 <sup>-4</sup> |                                           |
| DZMW-2 (UMZ UFA)                                        | omt  | 1,999          | 40                               | 23.50                               | 0.9              |                                     | 14,667                     | 1,961                                    | 3.06 x 10 <sup>-4</sup> |                                           |
| Distance Drawdown                                       | 0    |                | 40                               |                                     |                  |                                     | 26,400                     | 3,529                                    | 4.4 x 10 <sup>-5</sup>  |                                           |
| APPZ Pumping                                            | ß    | 1              | 5,331                            | 20.35                               | 11.0             | 483.76                              | 1,407,384                  | 188,153                                  |                         | 69                                        |
| HIF-42 LMZ (APPZ)                                       | npir | 678            | 5,331                            | 20.50                               | 2.6              |                                     | 1,655,745                  | 221,356                                  | 2.34 x 10 <sup>-4</sup> |                                           |
| DZMW-1 LMZ (APPZ)                                       | Pun  | 1,028          | 5,331                            | 22.60                               | 2.7              |                                     | 1,655,745                  | 221,356                                  | 4.43 x 10 <sup>-4</sup> |                                           |
| DZMW-2 LMZ (APPZ)                                       | Zdc  | 678            | 5,331                            | 20.50                               | 2.1              |                                     | 1,759,230                  | 235,191                                  |                         |                                           |
| Distance Drawdown                                       | AF   |                | 5,331                            |                                     |                  |                                     | 1,941,219                  | 259,521                                  | 1.81 x 10 <sup>-3</sup> |                                           |
| UFA ASR Pumping                                         | 50   | 1              | 318                              | 21.08                               | 83.9             | 3.79                                | 19,989                     | 2,672                                    |                         | 38                                        |
| HIF-42 UMZ (UFA) Early                                  | niqr | 678            | 318                              | 23.15                               | 1.9              |                                     | 34,980                     | 4,676                                    | 7.99 x 10 <sup>-4</sup> |                                           |
| DZMW-1 (UMZ UFA) Early                                  | Pun  | 1,028          | 318                              | 22.33                               | 4.0              |                                     | 25,831                     | 3,453                                    | 5.73 x 10 <sup>-4</sup> |                                           |
| DZMW-2 (UMZ UFA)                                        | ΕA   | 1,999          | 318                              | 23.50                               | 0.0              |                                     |                            |                                          |                         |                                           |
| Distance Drawdown                                       |      |                | 318                              |                                     |                  |                                     | 16,790                     | 2,245                                    | 7.77 x 10 <sup>-3</sup> |                                           |
| APPZ Pumping                                            | gr   | 1              | 5,331                            | 20.35                               | 11.6             | 459.67                              | 2,345,640                  | 313,588                                  |                         | 39                                        |
| HIF-42 LMZ (APPZ)                                       | mpi  | 678            | 5,331                            | 20.50                               | 2.5              |                                     | 2,165,206                  | 289,466                                  |                         |                                           |
| DZMW-1 LMZ (APPZ)                                       | Pui  | 1,028          | 5,331                            | 22.60                               | 2.6              |                                     | 2,165,206                  | 289,466                                  | 4.67 x 10 <sup>-5</sup> |                                           |
| DZMW-2 LMZ (APPZ)                                       | UFA  | 678            | 5,331                            | 20.50                               | 209.0            |                                     | 2,069,682                  | 276,695                                  | 1.18 x 10 <sup>-4</sup> |                                           |
| Distance Drawdown                                       | pu   |                | 5,331                            |                                     |                  |                                     | 3,518,460                  | 470,382                                  | 1.47 x 10 <sup>-3</sup> |                                           |
| UFA ASR Pumping                                         | ΡZ a | 1              | 318                              | 21.08                               | 86.6             | 3.67                                | 27,984                     | 3,741                                    |                         | 26                                        |
| HIF-42 UMZ (UFA) Early                                  | AP   | 678            | 318                              | 23.15                               | 3.7              |                                     | 26,235                     | 3,507                                    | 7.53 x 10 <sup>-4</sup> |                                           |
| DZMW-1 (UMZ UFA)                                        | ned  | 1,028          | 318                              | 22.50                               | 5.0              |                                     | 31,680                     | 4,235                                    | 2.52 x 10 <sup>-4</sup> |                                           |
| DZMW-2 (UMZ UFA)                                        | iqm  | 1,999          | 318                              | 23.50                               | 2.3              |                                     | 34,980                     | 4,676                                    | 3.94 x 10 <sup>-4</sup> |                                           |
| Distance Drawdown                                       | S    |                | 318                              |                                     |                  |                                     | 31,093                     | 4,157                                    | 5.18 x 10 <sup>-3</sup> |                                           |
| Average Transmissivity UFA ASR Well (Artesian)          |      |                |                                  |                                     |                  |                                     | 21,210                     | 2,836                                    | 2.64 x 10 <sup>-4</sup> |                                           |
| Average Transmissivity UFA ASR Well (Pumping)           |      |                |                                  |                                     |                  |                                     | 24,398                     | 3,262                                    | 3.05 x 10 <sup>-3</sup> |                                           |
| Average Transmissivity UFA ASR Well (Combined Pumping)  |      |                |                                  |                                     |                  |                                     | 30,394                     | 4,063                                    | 1.65 x 10 <sup>-3</sup> |                                           |
| Average Transmissivity APPZ ASR Well (Artesian)         |      |                |                                  |                                     |                  |                                     | 1,901,689                  | 254,237                                  | 8.3 x 10 <sup>-4</sup>  |                                           |
| Average Transmissivity APPZ ASR Well (Pumping)          |      |                |                                  |                                     |                  |                                     | 1,683,865                  | 225,116                                  | 8.29 x 10 <sup>-4</sup> |                                           |
| Average Transmissivity APPZ ASR Well (Combined Pumping) |      |                |                                  |                                     |                  |                                     | 2,452,839                  |                                          | 5.45 x 10 <sup>-4</sup> |                                           |
| Average Transmissivity UFA                              |      |                |                                  |                                     |                  | 25,334                              | 3,387                      | 1.65 x 10 <sup>-3</sup>                  |                         |                                           |
| Average Transmissivity APPZ                             |      |                |                                  |                                     |                  | 2,012,798                           | 269,091                    | 7.35 x 10 <sup>-4</sup>                  |                         |                                           |

\* = Distance for pumping wells is casing diameter approximately 1 ft.

The combined pumping APT was rerun because of generator failure after three days of pumping.



#### **Aquifer Performance Testing (APT)**

## **C-38S and C-38N Comparison Table**

|                             |                            | C-38S APT                                |                         | C-38N APT                  |                                          |                         |  |
|-----------------------------|----------------------------|------------------------------------------|-------------------------|----------------------------|------------------------------------------|-------------------------|--|
| Aquifer                     | Transmissivity<br>(gpd/ft) | Transmissivity<br>(ft <sup>2</sup> /day) | Storage                 | Transmissivity<br>(gpd/ft) | Transmissivity<br>(ft <sup>2</sup> /day) | Storage                 |  |
| Average Transmissivity UFA  | 249,583                    | 34,761                                   | $3.58 \times 10^{-4}$   | 24,334                     | 24,327                                   | 1.65 x 10 <sup>-3</sup> |  |
| Average Transmissivity APPZ | 1,051,555                  | 146,456                                  | *1.4 x 10 <sup>-4</sup> | 2,012,798                  | 2,012,791                                | 7.35 x 10 <sup>-4</sup> |  |

\* Storage Values are Estimated



## **Questions?**





## **GEOCHEMISTRY OF C38S, L63N, AND L63 CONTINUOUS CORES**

2024 ASR Science Plan Peer Review Panel Virtual Workshop July 10, 2024

Work completed by: Dr. Jamie MacDonald, Zoie Kassis, BeeJay Girimurugan, Ju Chou, Rachel Rotz, and 14 undergraduate students.



Presented by: Jamie MacDonald, Ph.D. Professor of Geology Environmental Geology Program Florida Gulf Coast University jmacdona@fgcu.edu

#### **Location Of Continuous Coreholes**



Continuous cores from the C38S, L63N, C59 and L63 coreholes were geochemically analyzed by FGCU.

These four coreholes are located along the northern shore of Lake Okeechobee.

### **Regional Hydrostratigraphy**

| Series                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Geolog<br>lithost               | ic formation or<br>ratigraphic unit                           | Lithology                                                                                                                               |                                            | Hydrogeologic unit                                           | Approximate<br>thickness, in fe |                                                               |        |
|------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|---------------------------------|---------------------------------------------------------------|--------|
| Holocene<br>to<br>Pliocene                     |                 | Holocene-age undifferentiated<br>and<br>Pleistocene-age formations <sup>1</sup><br>Tamiami<br>Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | age undifferentiated<br>and<br>ne-age formations <sup>1</sup> | Quartz sand; silt; clay; shell;<br>limestone; sandy shelly limestone                                                                    | al<br>ystem                                | Water-table/<br>Biscayne aquifer                             | 90_250                          |                                                               |        |
|                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Tamiami<br>Formation                                          | Silt; sandy clay; sandy, shelly<br>limestone; calcareous sand-<br>stone; and quartz sand                                                | Surfici<br>aquifer si                      | Confining beds<br>Gray limestone aquifer                     | 90-250                          |                                                               |        |
| Miocene<br>to<br>possibly<br>Late<br>Oligocene |                 | ne H Log H L |                                 | Peace<br>River<br>Formation                                   | Interbedded silt, quartz sand,<br>gravel, clay, carbonate,<br>and phosphatic sand                                                       | nfining unit or<br>uifer system            | Confining unit<br>Sandstone<br>aquifer<br>Confining unit     | 270-200                         |                                                               |        |
|                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Upper                                                         | Carbonate mudstone<br>to grainstone; claystone;<br>shell beds; dolomite;<br>phosphatic and quartz<br>sand; silt; and clay               | Intermediate co<br>intermediate aq         | Mid-Hawthorn aquifer Confining unit                          | 270-800                         |                                                               |        |
|                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arcat                           | Lower                                                         | Sandy, molluscan limestone; phosphatic<br>quartz sand, sandstone, and limestone                                                         | >                                          |                                                              |                                 |                                                               |        |
| Early Olig                                     | Early Oligocene |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Suwannee Limestone <sup>2</sup> |                                                               | Molluscan, carbonate packstone to grainstone with minor quartz sand and no phosphate                                                    | s stud                                     | Upper Floridan                                               | 25-480                          |                                                               |        |
| Late                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ocala Limestone <sup>2</sup>    |                                                               | Chalky carbonate mudstone, skeletal packstone<br>to grainstone, and coquinoid limestone with no<br>siliciclastic and phosphatic content | ocus of thi<br>em                          | aquifer                                                      | 100-860                         |                                                               |        |
| Eocene                                         | Middle          | Middle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>a</u>                        |                                                               | ormation                                                                                                                                | Upper                                      | Fossiliferous, lime mudstone<br>to packstone and grainstone; | F(<br>aquifer syst              | Middle<br>semiconfining<br>unit 1<br>Avon Park permeable zone | 25–420 |
|                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Park F                                                        |                                                                                                                                         | dolostone; abundant<br>cone-shaped benthic | ridan                                                        | Middle semiconfining<br>unit 2  | 60-750                                                        |        |
|                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avon                            | Lower                                                         | foraminifera                                                                                                                            | ¥<br>₽                                     | Uppermost<br>permeable zone                                  | 30-220                          |                                                               |        |
|                                                |                 | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ?                               | 2                                                             |                                                                                                                                         |                                            | Floridan                                                     | 1,700-2,000 <sup>3</sup>        |                                                               |        |
|                                                | Early           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Olds                            | mar Formation                                                 | Micritic limestone, dolomitic limestone,<br>and dolostone                                                                               |                                            | aquifer<br>(includes Zone                                    | 400-650 <sup>3</sup>            |                                                               |        |
| Paleoc                                         | ene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                               | edar Keys                                                     | Dolostone and dolomitic<br>limestone                                                                                                    |                                            | permeable zones<br>and confining units)                      |                                 |                                                               |        |
| i dicocette                                    |                 | Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | Formation                                                     | Massive anhydrite beds                                                                                                                  |                                            | Sub-Floridan confining unit                                  | 1 2002                          |                                                               |        |

The analyzed cores all start within the Hawthorn Group of the Intermediate confining unit (ICU) and extend as deep as the upper part of the Lower Floridan aquifer (LFA).

Hydrostrat column from (Reese, 2014)

#### **Why Perform These Geochemical Analyses?**



Because ASR can cause mobilization of metals into solution from the carbonate rocks of the FAS.

Characterizing the concentrations of metals along the entire length of the recovered continuous cores provides critical information that can be used to assess the viability of specific storage zones and to assist with well design.

#### **Mobilization Of Metals From Pyrite Dissolution**



Dissolution of pyrite (FeS<sub>2</sub>) is a major cause of mobilization of metals such as As into solution. Pyrite dissolution lowers the pH of groundwater. This acidic environment can then dissolve additional metals from organic matter (OM) (Koopmann et al., 2022).

2024 ASR Science Plan Peer Review Panel, 7/10/24

### Methodology



A hand-held portable X-Ray fluorescence unit (pXRF) was used to analyze the continuous cores at approximate one-foot intervals.

Additional pXRF analyses were performed in the flow zones and organic-rich intervals.

Cores from C38S, L63N, and L63S are completely analyzed and the cores from C59 are currently being analyzed.

The pXRF analyzes 31 elements including key metals (As, Hg, and Mo).

### **Quality Control**



We analyzed 5 standards as knowns to test the data quality produced by the pXRF

Multiple measurements were collected at 20 depths from the C38S core to test for pXRF reproducibility.

Elemental totals were used to check for the quality of the analyses, and several results were removed due to poor totals.

Total number of analyses after quality control: 814 from C38S; 1,339 from L63N, and (currently) 1,116 from L63S.

### **Mg/Ca ratios**



Clay in the ICU causes high Mg/Ca ratios, while the underlying Ocala Limestone in the UFA has lower Mg/Ca ratios.

At about 1,300 ft bls in cores L63N and L63S the Mg/Ca ratio increases to dolostone levels of 0.8 (Prothero and Schwab, 2014) suggesting a lithologic change from limestone to dolostone.

#### **AI/Ca ratios**



Clay in core C38S and organic-rich layers in all three cores have high Al/Ca ratios.

This supports a terrestrial (dry land) origin for these layers – which will be supported by other geochemical data.

#### **Massive and Nodular Gypsum in MCU\_II**



2024 ASR Science Plan Peer Review Panel, 7/10/24

### Chemistry of Massive and Nodular Gypsum in MCU\_II at L63N



The gypsum in the Middle Confining Unit II at L63N. Metal concentrations in MCU\_II tend to be lower than the in the rock directly above and below the gypsum and have elevated S:Ca ratios.

2024 ASR Science Plan Peer Review Panel, 7/10/24

### **Arsenic Concentrations**



Arsenic (As) is elevated in the lower UFA flow zone and in the APPZ upper flow zone at C38S.

As is elevated at the top of the upper APPZ flow zone, the bottom of the lower APPZ flow zone, and in approximately the upper 100 ft of the underlying confining unit in L63N. Arsenic becomes elevated in the upper portion of the LFA flow zone.

As is elevated in the UFA flow zone, in the confining units, and in the lower APPZ flow zone in L63S.

The gaps in data on the plots are areas where As was below the pXRF detection limit of 1 ppm (1 mg/kg).

### **Mercury Concentrations**



Mercury (Hg) concentrations are elevated in the confining unit between the two UFA flow zones, within the lower UFA flow zone, and in the underlying confining unit in C38S.

Hg concentrations are elevated at the top and bottom contacts of the upper APPZ flow zone , within the lower APPZ flow zone, and the upper part of the LFA flow zone in L63N.

Hg is elevated at the bottom part of the UFA flow zone, within the confining units, and the lower APPZ flow zone in L63S.

### **Molybdenum Concentrations**



Molybdenum (Mo) concentrations were generally highest in the L63N cores.

Although Mo shows a range of several orders of magnitude, it was measured at slightly lower concentrations in the upper APPZ flow zone in L63N and L63S. Relatively elevated Mo concentrations were measured in the lower APPZ flow zone in L63S

The gaps in data are areas where Mo was below the pXRF detection limit of 1 ppm (mg/kg).

### **Nickel Concentrations**



The gaps in data are areas where Ni was below the pXRF detection limit of 5 ppm (mg/kg).

Nickel (Ni) is elevated in the lower UFA Flow Zone and the confining unit beneath the UFA flow zone in C38S.

In L63N and L63S, elevated Ni concentrations were measured at the upper contact of the UFA flow zone.

At L63N, elevated Ni concentrations were measured in the confining unit between the upper and lower APPZ flow zones, sporadically in the APPZ lower flow zone, and within MCU\_II above the LFA flow zone.

#### **Chromium Concentrations**



The gaps in data are areas where Cr was below the pXRF detection limit of 2 ppm (mg/kg).

Chromium (Cr) concentrations are relatively low throughout the FAS in C38S and L63S, except for a few elevated concentrations within the UFA flow zone at C38, the confining unit between the APPZ flow zones and the APPZ lower flow zone in L63S.

Cr concentrations in L63S are highest in the ICU, the bottom half of the UFA flow zone and upper half of MCU\_I and sporadically in the APPZ upper flow zone and LFA flow zone. Is is also elevated in the UFA flow zones at L63N, and within the middle semiconfining unit and APPZ lower flow zone at L63S.

#### **Organic-rich Layers**



### **Summary of Organic-rich Layers**

| Core               | C38S                  | L63N | L63S |
|--------------------|-----------------------|------|------|
| Number of organic  | UFA Flow Zone $1 = 0$ |      |      |
| layers in UFA Flow |                       | 0    | 1    |
| Zone               | UFA Flow Zone $2 = 6$ |      |      |
| Number of organic  |                       |      |      |
| layers in APPZ     | 2                     | 1    | 0    |
| Upper Flow Zone    |                       |      |      |
| Number of organic  |                       |      |      |
| layers in APPZ     | Core not recovered    | 4    | 6    |
| Lower Flow Zone    |                       |      |      |
| Number of organic  |                       |      |      |
| layers in LFA Flow | Core not recovered    | 7    | 28   |
| Zone               |                       |      |      |

### **Effects Of Organic Layers On Metals Concentrations**

|      |                                                                 | As (ppm) | Hg (ppm) | Mo (ppm) | Ni (ppm) |
|------|-----------------------------------------------------------------|----------|----------|----------|----------|
| C38S | Average Metal Concentration in Non-<br>Organic Sections of Core | 63       | 9        | 81       | 26       |
|      | Average Metal Concentration in Organic<br>Layers                | 741      | 46       | 2209     | 101      |
| L63N | Average Metal Concentration in Non-<br>Organic Sections of Core | 16       | 9        | 65       | 26       |
|      | Average Metal Concentration in Organic<br>Layers                | 605      | 48       | 1666     | 102      |
| L63S | Average Metal Concentration in Non-<br>Organic Sections of Core | 15       | 10       | 31       | 25       |
|      | Average Metal Concentration in Organic<br>Layers                | 25       | 49       | 142      | 57       |

#### **ICP-MS Analysis**



Portions of the cores, like zones of broken rock, were sampled and sent out for external ICP-MS analysis at Hamilton Analytical Laboratory, Hamilton College.

Post-Archean average sediment (PAAS)-normalized diagrams for samples from C38S and L63N shown here.

Note that the cerium (Ce) anomaly is not pronounced in the organic-rich layers.

#### **Origins Of Organic-rich Layers**



This cerium anomaly can be represented by normalizing Ce to post-Archean average sediment compositions from Australia to create a Ce/Ce\*.

This suggests the organic-layers have a stronger terrestrial component than the limestones and dolostones from the Ocala Limestone and Avon Park Formation.

Ce/Ce<sup>\*</sup> vs.  $Al_2O_3$  diagram from Zhang et al. (2017).

### **Origins Of Organic-rich Layers**



Mo, As, U, and Zr correlate to a higher Ce/Ce\*.

Generally, the higher Mo, As, U, and other metal values are in the organic layers.

The correlation between the elevated metals concentrations and the high Ce/Ce\* suggests terrestrial origin for these metals in the organic-rich layers is possible.



O Ocala Limestone Ocala organic layer

Avon Park Fm.

#### Conclusions

The limestones of the UFA flow zones have relatively lower As, Hg, Ni, and Cr concentrations than the deeper flow zones in the dolostone-dominated APPZ and LFA-upper. Mo, however, can be elevated in the UFA Flow Zone.

Metals in the analyzed cores are elevated in organic-rich layers, clay layers, and, locally, along unit boundaries and disconformities.

Organic-rich layers have a terrestrial source and contain very high metal concentrations, high AI concentrations, and high Ce/Ce\*. These organic layers are found within flow zones and should be considered when selecting injection and recovery zones and during well design. Of the 3 continuous cores analyzed so far, L63S had the lowest As and Mo concentrations in the organic layers and the lowest overall concentrations of As, Hg, and Mo.

Rock, mineral, and elemental solubility as well as aquifer parameters from aquifer testing should be combined with the metal concentrations obtained from this study when considering future ASR well design and planning/modeling efforts.

#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT



# Break (15 min)



LAKE OKEECHOBEE WATERSHED RESTORATION PROJECT (LOWRP)



AQUIFER STORAGE AND RECOVERY (ASR) TREATMENT TECHNOLOGY

#### **TREATMENT SYSTEM UPDATE**

**District Project Manager:** Jennifer Gent, PE **Stantec Project Technical Lead:** Heath Wintz, PE



D

Stantec

DRAFT: June 26, 2024

#### **OVERVIEW**

- Summary of Work to Date
- Technology Selection & Testing
- >Treatment Systems
  - Process Overview
  - Membrane Filtration Systems
  - Treatment Facility Site Plan & Phasing
  - Recovered Water Considerations
    - DO reduction & Arsenic sequestration
  - Backwash Thickening & Dewatering

Stantec

- Schedule
- ➢Next Steps

sfwmd.gov

#### SUMMARY OF WORK TO DATE

Treatment Alternatives Evaluation (2020) Proof of Concept (POC) Testing (2021-2022) Conceptual Discipline Design (2022) Preliminary Design (2023-2024) Membrane Filtration System RFP (2023-2024) DO Reduction Bench-Scale Testing (2024)\* DO Reduction Process Alternative Evaluation (2024) Backwash Thickening Bench-Scale Testing (2024)\* \*in coordination with USACE Engineering Research & Development Center (ERDC)

### **TECHNOLOGY SELECTION & TESTING**

#### POC Testing (Stantec, 2021-2022) demonstrated:

#### **MEDIA FILTRATION + UV:**

- Low filtration rate for media filters translates to a large facility footprint. Backwash ponds require significant land.
- Even at low filtration rate, media filters minimally reduce turbidity/solids, resulting in high UV dose requirement.
- UV can reliably disinfect but requires up to a 30 mJ dose during poor water quality events (as opposed to 21 mJ dosed at KRASR previously)

Clean water source strongly recommended for backwashing, but utility water may not be available from OUA.

#### **MEMBRANE FILTRATION:**

- Coliform was reliably removed by size exclusion without additional disinfection technology.
- Excellent removal of solids and turbidity results in greater solids content in backwash.
- > Operations vary significantly by vendor:
  - Coagulant dose (color removal)
  - Cleaning chemical requirements
  - Membrane life
- Settleability and dewaterability of backwash waste differs significantly



# TREATMENT SYSTEMS

How do we produce water suitable for aquifer recharge?





#### **TREATMENT PROCESS OVERVIEW**



72
#### **TREATMENT PROCESS: MF/UF MEMBRANES**

#### **Membrane**

#### < Elements < Vessels

#### < Racks < Trains

Veolia & FilmTec (polymeric)

Aqua Aerobic (ceramic)

sfwmd.gov



#### **MF/UF MEMBRANES – DEMONSTRATION TESTING**

> 3 Participating Membrane Suppliers
> Veolia (polymeric)
> FilmTec (polymeric)
> Aqua Aerobic (ceramic)

All membranes remove coliform bacteria reliably

However, filtrate color differs between polymeric and ceramic membranes

Stantec



#### **TREATMENT: C-38S LOCATION**



#### **TREATMENT – PHASED DESIGN**

Design of the C38-S treatment facility has been developed with a phased approach.

- Phase 1 10 MGD
  - Construct facilities necessary to enable demonstration testing of membrane filtration technology and cycle testing of one well pair at a capacity of 10 MGD.
  - Membrane treatment capacity will be split evenly between 3 suppliers (3.3 MGD, each).
  - Collect operating data to quantify consumables, energy and OPEX costs, which will set the stage for a competitive Net Present Value (NPV)-based selection of membrane filtration supplier for expansion in Phase 2.
- Phase 2 Expansion to 50 MGD
  - Competitive NPV-based selection of membrane supplier for full-scale facility.
  - Design and expand facility from 10 to 50 MGD, based on the lowest NPV option for the District
  - Connect to 4 additional well pairs at C-38S site

#### **TREATMENT FACILITY: SITE PLAN**



#### **TREATMENT FACILITY - PHASING**



Stantec

sfwmd.gov



## BACKWASH THICKENING AND DEWATERING

How do we treat backwash and residual solids from the treatment process?





#### **BACKWASH TREATMENT PROCESS OVERVIEW**



### **BACKWASH THICKENING**

- Thickening of BWW is needed to minimize sludge storage volume prior to dewatering.
  - Backwash waste water (BWW) from ceramic and polymeric membrane systems differ significantly.
  - Bench scale testing conducted to thicken backwash waste (BWW) from ERDC pilot membrane filtration systems.
  - Pilot scale thickening trials conducted for gravity settling and flotation processes
- Results of testing used to inform preliminary design criteria



#### **BACKWASH THICKENING PILOT**

#### Gravity Settling



### Suspended Air Flotation (SAF)



Effective for larger particle sizes

#### Effective for smaller particle sizes

Thickened solids analyzed by centrifuge and screw press manufacturers for initial concentration, polymer requirements, and dewatered cake solids%.



How do we handle potential arsenic issues during recovery?





#### **RECOVERED WATER: ARSENIC**

Arsenic is stable as a sulfide solid (pyrite and arsenopyrite) under native conditions (reducing).

- Storing surface water with even low concentrations of dissolved oxygen (DO) will temporarily disrupt this redox environment.
- During cycle testing at KRASR, Arsenic was present in recovered water. Arsenic was 7x the MCL during cycle 1.
- Based on data from the 2013 CERP report, this situation appears to be shortterm (commissioning) in nature rather than long-term.

🕥 Stantec



2013 CERP ASR Final Tech Data Report

### **RECOVERED WATER: ARSENIC**

#### >3 Options for Arsenic Management:

#### **1.** Mixing Zone

• A regulatory approach to establishing a mixing zone could achieve compliance with 50 ppt surface water MCL, depending on initial recovered concentration.

#### 2. Re-treatment

- A re-treatment approach using membrane filters could remove arsenic from recovered water.
- Treatment facility is designed with flexibility to add hypochlorite to oxidize Arsenite (III) to Arsenate (V), to precipitate as a solid, which would be captured with coagulant and removed by membrane filters.

#### **3.** Sequestration

 Reduce dissolve oxygen (DO) from surface water before aquifer recharge to reduce risk of arsenic mobilization.

### **ARSENIC SEQUESTRATION: DO REDUCTION**

#### DO Reduction

Evaluation of 6 technologies conducted:

- Conceptual treatment processes developed & evaluated on economic and non-economic criteria
- Chemical DO reduction bench tested

#### Utility ASR DO Reduction Survey conducted

| Туре     | Process                           |
|----------|-----------------------------------|
| Physical | Membrane Degasification (MDG)     |
|          | Vacuum Stripping                  |
|          | Minox Deoxygenation               |
|          | Gas Displacement Technology (GDT) |
| Chemical | Sodium bisulfite                  |
|          | Sodium hydrosulfide               |

| Municipality              | Source                                   | Capacity<br>(MGD) | DO Reduction<br>Technology | Туре                    | Starting DO Ending DO (ppm) (ppm) |            | Status             |
|---------------------------|------------------------------------------|-------------------|----------------------------|-------------------------|-----------------------------------|------------|--------------------|
| City of Bradenton (ASR-1) | Potable                                  | 1.0               | Physical                   | Membrane Degasification | 8.0                               | < 0.4      | Operational        |
| City of Bradenton (ASR-2) | Potable                                  | 2.0               | Physical                   | Vacuum Stripping        | 8.0                               | < 0.5      | Operational        |
| City of North Port        | Partially<br>Treated<br>Surface<br>Water | 1.5               | Chemical                   | Sodium Hydrosulfide     | 4.0                               | 0.75*      | Inactive           |
| City of Deland            | Potable                                  | 0.4               | Chemical                   | Sodium Hydrosulfide     | 5.5                               | 0.75*      | Inactive           |
| City of Venice            | Reclaimed                                | 3.0               | Chemical                   | Sodium Bisulfite        | not yet com                       | nmissioned | Operational        |
| City of Palmetto          | Reclaimed                                | 1.2               | Chemical                   | Sodium Bisulfite        | 4.0                               | < 2.0      | Under construction |
| Flatford Swamp            | Potable                                  | 0.5               | Chemical                   | Sodium Bisulfite        | 8.3                               | < 2.0      | Operational        |



#### **DO REDUCTION: BENCH SCALE TESTING**

#### Testing conducted at KRASR laboratory

Testing conducted in parallel with USACE ERDC researchers (March 2024)



- Chemical DO reduction trials conducted using sodium hydrosulfide (NaHS)
  - Chemical DO reduction proved to be pH dependent
- Physical DO reduction trials conducted by ERDC using membrane deoxygenation
  - Physical DO reduction to be evaluated further and technology selected for next design phase



Effect of pH value on Reaction Rate Constant (Yasunishi, 1976)



# SCHEDULE

What are our milestones for Design, Bidding and Construction





### **CONCEPTUAL SCHEDULE – DESIGN & CONSTRUCTION**

#### Projected Design and Construction Milestones

- Preliminary Design
  - 10/24
- Final Design
  - 11/25
- Construction
  - 8/27
- Cycle Testing
  - 6/29

| Task Name 🛛 🗸 🗸                                  | Duration 🚽 | Start -      | Finish 👻     | A M | Half 2, 2024<br>J J A S | Half 1, 202<br>ONDJFM | 25 Ha<br>IAMJJ | alf 2, 2025<br>A S O | Half 1, 2026<br>NDJFMAM | Half 2, 2026<br>J J A S O N | Half 1, 2027<br>D J F M A | Half 2, 2027<br>M J J A S O N |
|--------------------------------------------------|------------|--------------|--------------|-----|-------------------------|-----------------------|----------------|----------------------|-------------------------|-----------------------------|---------------------------|-------------------------------|
| ✓ Design                                         | 746 days   | Thu 4/20/23  | Thu 2/26/26  |     |                         |                       |                |                      |                         |                             |                           |                               |
| Preliminary Design                               | 402 days   | Thu 4/20/23  | Fri 11/1/24  |     |                         | -                     |                |                      |                         |                             |                           |                               |
| 4 4.1 Membrane Procurement (RFP)                 | 369 days   | Wed 6/5/24   | Mon 11/3/25  | Г   |                         |                       |                |                      |                         |                             |                           |                               |
| 4.1.3 Final RFP Package for Membrane Suppliers   | 3.8 wks    | Wed 6/5/24   | Mon 7/1/24   |     |                         |                       |                |                      |                         |                             |                           |                               |
| Procurement processing                           | 3 wks      | Tue 7/2/24   | Mon 7/22/24  |     | 1 in 1                  |                       |                |                      |                         |                             |                           |                               |
| Manufacturers Prepare Proposals                  | 4 wks      | Tue 7/23/24  | Mon 8/19/24  |     |                         |                       |                |                      |                         |                             |                           |                               |
| 4.1.5 Evaluation, Neg & Recommendaton to Purchas | 6 wks      | Tue 8/20/24  | Mon 9/30/24  |     | -                       | 1                     |                |                      |                         |                             |                           |                               |
| 4.1.6 Gov Board Agenda Item                      | 4 wks      | Tue 10/1/24  | Mon 10/28/2  |     | 1                       |                       |                |                      |                         |                             |                           |                               |
| Gov Board Approval                               | 1 wk       | Tue 10/29/24 | Mon 11/4/24  |     |                         | SFWMD                 |                |                      |                         |                             |                           |                               |
| Submittals Prep & Review                         | 20 wks     | Tue 11/5/24  | Mon 3/24/25  |     |                         |                       | MFSS/Stanted   |                      |                         |                             |                           |                               |
| Membrane Manufacture                             | 8 mons     | Tue 3/25/25  | Mon 11/3/25  |     |                         |                       | ·              |                      | MFSS                    |                             |                           |                               |
| 4 Final Design                                   | 280 days   | Mon 11/4/24  | Fri 11/28/25 |     |                         |                       |                |                      | 7                       |                             |                           |                               |
| Scoping                                          | 40 days    | Mon 11/4/24  | Fri 12/27/24 |     |                         |                       |                |                      |                         |                             |                           |                               |
| 90% Final Design                                 | 180 days   | Mon 12/30/24 | Fri 9/5/25   |     |                         | Ť                     |                | 1                    |                         |                             |                           |                               |
| SFWMD, USACE Technical Review                    | 8 wks      | Mon 9/8/25   | Fri 10/31/25 |     |                         |                       |                | Terrare -            | n                       |                             |                           |                               |
| TRB                                              | 0 days     | Fri 11/28/25 | Fri 11/28/25 |     |                         |                       |                |                      | 11/28                   |                             |                           |                               |
| Corrected Final Design                           | 54 days    | Mon 12/15/25 | Thu 2/26/26  |     |                         |                       |                |                      |                         |                             |                           |                               |
| Corrected Final Design                           | 2 mons     | Mon 12/15/25 | Fri 2/6/26   |     |                         |                       |                |                      |                         |                             |                           |                               |
| SFWMD, USACE RTA Check set                       | 14 days    | Mon 2/9/26   | Thu 2/26/26  |     |                         |                       |                |                      | 1                       |                             |                           |                               |
| <ul> <li>Construction</li> </ul>                 | 450 days   | Fri 2/27/26  | Thu 11/18/2; |     |                         |                       |                |                      | · · · ·                 |                             |                           |                               |
| Bidding                                          | 60 days    | Fri 2/27/26  | Thu 5/21/26  |     |                         |                       |                |                      |                         |                             |                           |                               |
| 4 Contracting                                    | 316 days   | Thu 5/21/26  | Fri 8/6/27   |     |                         |                       |                |                      | 1                       |                             |                           |                               |
| Gov Board Approval                               | 0 days     | Thu 5/21/26  | Thu 5/21/26  |     |                         |                       |                |                      |                         | 5/21                        |                           |                               |
| Construction Contract Execution                  | 4 wks      | Fri 5/22/26  | Thu 6/18/26  |     |                         |                       |                |                      | i                       |                             |                           |                               |
| Mobilization                                     | 1 mon      | Fri 6/19/26  | Thu 7/16/26  |     |                         |                       |                |                      |                         | <b>1</b>                    |                           |                               |
| Civil/Site Work + Vertical                       | 246 days   | Fri 8/28/26  | Fri 8/6/27   |     |                         |                       |                |                      |                         | Č.                          |                           |                               |
| Structural/Arch                                  | 145 days   | Fri 10/23/26 | Thu 5/13/27  |     |                         |                       |                |                      |                         |                             |                           |                               |
| Mechanical                                       | 185 days   | Fri 11/13/26 | Thu 7/29/27  |     |                         |                       |                |                      |                         |                             |                           |                               |
| Membrane Installation                            | 3 mons     | Fri 4/2/27   | Thu 6/24/27  |     |                         |                       |                |                      |                         |                             | <b>,</b>                  |                               |





# NEXT STEPS

How do we advance ASR thoughtfully and efficiently?





#### **NEXT STEPS**

- Issue Membrane RFP package to suppliers
- Integrate thickening and dewaterability results into preliminary design
- Submit Preliminary Design
- Prepare and submit FDEP permit application package
- Integrate membrane supplier equipment into next design phase
- Integrate most appropriate DO Reduction technology into next design phase

#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT



# QUESTIONS/DISCUSSION?

www.sfwmd.gov/lowrp or www.sfwmd.gov/asr







#### Multi-Well Assessment of Fracture Porosity of the Floridian Aquifer System in Support of Future ASR Wells in Northern Lake Okeechobee



sfwmd.gov

Victor Flores & Kevin J. Cunningham USGS



#### **Floridan Aquifer System Fracture Study**

#### Objectives

- 1) Enhance and refine Regional Hydrogeologic Framework: To contribute to the understanding of the Floridan aquifer system's fracture geometry and flow-system characteristics to support future drilling and construction of ASR wells and regional hydrogeologic framework projects.
- 2) Inform Well Design and Groundwater Movement Controls: To inform well design and assessment of controls on groundwater movement in support ASR utility projects and drinking water resource protection.
- **3)** Support Water Supply via ASR: To provide information on aquifer zone suitability for ASR water supply at four corehole sites.

sfwmd.gov





#### **Floridan Aquifer System Fracture Study**

#### Key Findings

- 1) Fractures are much more prominent in brittle dolomitized rock as compared to limestone intervals
- 2) Natural fractures related to karst collapse zones and tectonics are commonly present in dolomite
- 3) Acoustic borehole image (ABI) logging should be considered for future projects. ABI logs can quantify aperture width, which is related to hydraulic conductivity
- 4) Packer-test specific capacity is highest at vertical intervals with a high concentration of natural fractures

sfwmd.gov





#### **Core Photography**



L-63S Core



#### **Fracture Classification**

- Vuggy Bedding Plane: Caused by dissolution
- Natural Fracture: Created by geologic forces and processes
- Induced Fracture: Created by drilling, coring, and handling processes

Fractures or bedding planes can be identified by outlining the sinusoid features on the OBI image.







## **Vuggy Bedding Plane (blue) + Natural Fracture (red)**

#### C-38S Upper Avon Park Permeable Zone





#### **Natural Fracture in Brittle Dolomite**

L-63N Upper Avon Park Permeable Zone







#### L-63N Upper Avon Park Permeable Zone





#### **Fracture Data Analysis**





#### **Natural Fracture Data Analysis**

### 63N L-63\$ C-385 n= 70 C-59 n= 31 C40 78 C41 n= 26 **Corehole Locations** IT

#### Upper Avon Park Permeable Zone



#### **Natural Fracture Data Analysis**

#### Lower Avon Park Permeable Zone





#### **Future Tasks**

Use natural fractures with open apertures to investigate anisotropic groundwater flow
Investigate relationship between regional geologic features & fracture orientations



Lineaments identified on Landsat Fees (2004)



Tectonic elements & crustal features of Florida Erlich & Pindell (2021)

sfwmd.gov

# **Questions or Comments?**

## **Thank You!**



Characterization Of Microbial & Geochemical Processes That Contribute To Nutrient Reduction & Potential Clogging

> John Lisle, PhD US Geological Survey St. Petersburg, FL

ASR Science Plan Peer Review Panel Virtual Workshop July 10, 2024

# Well, Groundwater, Surface Water & Above Ground Mesocosm Sites

| Site            | Sample Types       | Sample Source |
|-----------------|--------------------|---------------|
| C295            | Nativo Groupdwator | UFA           |
| C303            | Native Groundwater | APPZ          |
| 1626            | Nativo Groundwator | UFA           |
| 2033            | Native Groundwater | APPZ          |
| C50             | Native Groundwater | UFA           |
| C39             | Native Groundwater | APPZ          |
| Kissimmee River | Recharge Water     | KRASR Intake  |


# **Collection & Processing Aquifer Cores for** Packing Laboratory Columns



Biofilm

# **Bioclogging Column Preparation & System Set Up**



# **Experimental Design**

#### • Conditioning Phase:

- Uses filtered sterilized groundwater from either the UFA or APPZ
- Pumped for ~14 days through:
  - BF+ and BF- columns
  - Biofilm development rate column

#### • Recharge Phase (Primary)

- Uses filtered (300μm) Kissimmee River water
- Pumped for ~21 days through:
  - BF+ and BF- columns
  - Biofilm development rate column

#### • Storage Phase

• All columns valved off and allowed to sit static for 4 weeks

#### • Recovery Phase

• Porewater volume from BF+ and BF- columns collected for analyses

#### • Recharge Phase (Secondary)

- Uses filtered (300µm) Kissimmee River water
- Pumped up to 21 days or until a significant trend in pressure increase within the columns and/or reduction in column discharge rates.

# Geochemical Changes in Recharged Water During Storage C38S/UFA: DOC



# Nutrient Reductions in Recharged Water During Storage C38S/UFA: $NO_3 + NO_2$



# Nutrient Reductions in Recharged Water During Storage C38S/UFA: *NH*<sub>4</sub>



# Nutrient Reductions in Recharged Water During Storage C38S/UFA: *Phosphorus (PO₄)*



# Nutrient Reductions in Recharged Water During Storage *Silicates (SiO*<sub>4</sub>)



# Geochemical Changes in Recharged Water During Storage C38S/UFA: Cl<sup>-</sup> Na<sup>+2</sup> SO<sub>4</sub> Ca<sup>+2</sup>



## Geochemical Changes in Recharged Water During Storage C38S/UFA: *Manganese*



## Geochemical Changes in Recharged Water During Storage C38S/UFA: *Molybdenum*



## Geochemical Changes in Recharged Water During Storage C38S/UFA: *Iron*



## Geochemical Changes in Recharged Water During Storage C38S/UFA: Arsenic



## What Is Driving The Increases In Arsenic & Iron During the Storage Phase?

#### Anaerobic Nitrogen Reduction with Iron Oxidation?





# Biodegradable DOC (BDOC) Setup for Native Groundwater Microbe Colonization







## Biodegradable DOC (BDOC) In Recharged Water By Native Groundwater Microbial Communities



~14% of DOC in Kissimmee River water is assimilable by native UFA microbial communities

## Biofilm Growth Rate Potential Of Recharged Water



Glass beads (2.0mm) are exposed to native groundwater during the Conditioning Phase in parallel to the BF+ and BF- columns.



| Recharged Water Source | Total<br>Protein | Total<br>Carbohydrate | Total<br>Biofilm | Biofilm Growth<br>Rate |
|------------------------|------------------|-----------------------|------------------|------------------------|
|                        | (mg/L)           | (mg/L)                | (mg/L)           | (mg biofilm/m²/d)      |
| Kissimmee River        | 1.370            | 1.965                 | 3.335            | 0.213                  |

## Biogenic Gas Production Post Storage Pore Water BF<sup>+</sup> Column C38S/UFA

| Gas             | Units | Air  | Column<br>Porewater |
|-----------------|-------|------|---------------------|
| CO2             | %     | 0.04 | 1.80                |
| N <sub>2</sub>  | %     | 78   | 69.78               |
| CH <sub>4</sub> | mg/L  | 1.7  | 8.1                 |
| $C_2H_4$        | mg/L  | BDL  | 0.0002              |

# Hydraulic Conductivity



## Hydraulic Conductivity C38S/UFA



## **Next Steps**

- Completion of the C38S/APPZ crushed core column experiment
  - Will be completed by end of July 2024
- Initiation and completion of the L63S/UFA and L63S/APPZ crushed core column experiments and data analyses
- Initiation and completion of the C59/UFA and C59/APPZ crushed core column experiments and data analyses



## Panel Discussion (15 min)





## **Public Comment (15 min)**





### Lunch Break 12:00 – 1:00 pm





### Quantitative Ecological Risk Assessment Workplan and Next Steps

Joe Allen Principal Wildlife Biologist /Risk Assessor Formation Environmental LLC



#### **ASR Ecological Risk Assessment History**

Original ERA completed in 2015 as part of the ASR Regional Study

- Utilized data from 2 ASR Pilot Facilities
  - Kissimmee River ASR (KRASR)
  - Hillsborough ASR (HASR)

CENTRAL AND SOUTHERN FLORIDA PROJECT

COMPREHENSIVE EVERGLADES RESTORATION PLAN



FINAL TECHNICAL DATA REPORT

AQUIFER STORAGE AND RECOVERY REGIONAL STUDY

MAY 2015









COMPREHENSIVE EVERGLADES RESTORATION PLAN

Regional Ecological Risk Assessment of CERP Aquifer Storage and Recovery Implementation in South Florida

#### **ASR Ecological Risk Assessment History**

#### >ASR ERA Conclusions

- Low likelihood of risk to Lake Okeechobee and the Everglades.
  - Highest Larval fish due to impingement/entrainment.
  - Low Hg methylation.
  - Limited toxicity.
  - Minimal bioconcentration.
- ASR systems should be constructed where sufficient dilution can occur.



Photograph 3.1. Kissimmee River ASR Pilot Facility.



Photograph 3.2. Hillsboro ASR Pilot Facility.

#### **ASR Ecological Risk Assessment History**

# Comments received from NRC and PRP.

- Look at longer storage times and larger recovery volumes.
- Toxicity testing with adjustments to water parameters.
- Look at effects of hardness adjustments.
- Additional *in situ* bioaccumulation studies.
- More quantitative risk assessment.

Review of the Everglades Aquifer Storage and Recovery Regional Study

Committee to Review the Florida Aquifer Storage and Recovery Regional Study Technical Data Report

Water Science and Technology Board

Division on Earth and Life Studies

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu

#### **ASR Ecological Risk Assessment Path Forward**

#### Public process with multiple stakeholders.

- Many different approaches for analyses and data needs.
- Responsive to stakeholders, but as efficient and costeffective as possible.
- Utilize comments from NRC and from 2022 PRP meeting.





#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT





#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT



sfwmd.gov

### **Risk Management Goals**

- Risk management goals provide the overarching basis for the ERA.
  - Guide sampling design.
  - Determine data needs.
  - Decision support structure.

#### **ASR ERA Risk Management Goal**

Site conditions due to operation of the planned ASR Wells should not cause significant risk of adverse ecological effects to receptors from exposure to stressors directly related to the operation of the ASR Wells.



### **Risk Management Goals**

#### Effects considered on a tiered basis

Tier 1. Localized effects to sub-populations of ecological receptors in the vicinity of ASR Well discharges. Tier 1 ERA is defined in the 2023 Work Plan.

Tier 2. Population- and community- level effects to ecological receptors potentially due to changes in the ecosystem from to the operation of the ASR Wells.

Tier 3. Regional effects to ecological receptor populations downstream of the ASR Well discharges.

- Work Plan provides a tool for streamlining the assessment of risk at future ASR Well clusters.
  - If conditions are similar at other Sites, potential risks are also similar.
  - Focus risk assessment at other sites on where conditions are significantly different from C-38.



#### **Risk Questions**

#### Primary questions to be answered by the ERA

- 1. What stressors to ecological receptors are directly related to the operation of the ASR Wells within the Lake Okeechobee drainage?
- 2. What groups of ecological receptors have the potential to be impacted by the stressors associated with the operation of the ASR Wells?
- 3. Are the potential risks for adverse effects to ecological receptors potentially impacted by the stressors associated with the operation of the ASR Wells significant and do they warrant changes to ASR implementation plans?
- 4. Can the conclusions of the ASR ERA for the initial ASR Well clusters (e.g., C-38) be applied to ASR Well clusters constructed in the future? How can the conclusions of this risk assessment be used as a tool to streamline future risk assessments?



#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT



sfwmd.gov

#### **Ecological Risk Assessment Stressors**

Table 4-1 Stressors to be Evaluated in the ASR ERA Regional ASR Implementation Ecological Risk Assessment Work Plan

| Physical Stressors      | Physicochemical Stressors              | Potentially Toxic Chemical Stressors <sup>1</sup> |  |
|-------------------------|----------------------------------------|---------------------------------------------------|--|
| Impingement/Entrainment | Nitrogen                               | Aluminum                                          |  |
| Temperature             | Phosphorous                            | Antimony                                          |  |
|                         | Alkalinity                             | Arsenic                                           |  |
|                         | Hardness (from Ca/Mg)                  | Cadmium                                           |  |
|                         | Dissolved Oxygen                       | Chromium                                          |  |
|                         | pН                                     | Mercury <sup>2</sup>                              |  |
|                         | Individual Cations/Anions <sup>3</sup> | Methyl Mercury <sup>2</sup>                       |  |
|                         | Turbidity                              | Molybdenum                                        |  |
|                         |                                        | Nickel                                            |  |
|                         |                                        | Selenium <sup>2</sup>                             |  |
|                         |                                        | Zinc                                              |  |

<sup>1</sup> - Formation 2021 (Historical Data Analysis) indicated that risks due to chemical stressors are unlikely via direct toxicity or bioaccumulation. They will, however, be assessed in the ASR ERA to address NRC comments on the effect of longer storage times and/or higher storage volumes.

- <sup>2</sup> Potentially bioaccumulative chemicals to be the focus of the wildlife ROCs.
- <sup>3</sup> Individual cations and anions include Ca, Mg, Na, K, Cl<sup>-</sup>, S<sup>2-</sup> and SO<sub>4</sub><sup>2-</sup>

sfwmd.gov
#### **Population Level Receptors**

- Aquatic-Dependent Birds
  - Wood and Mottled Ducks (herbivores)
  - Little Blue Heron and Great Blue Heron (omnivores)
  - Osprey (piscivore)
- Aquatic Reptiles
  - Florida Soft Shelled Turtle (omnivore)
  - American Alligator (carnivore)





#### **Assessment Endpoint**

Survival, growth, and reproduction downstream of the ASR discharge adequate to sustain populations.

#### sfwmd.gov

### **Population Level Receptors**

- Species representative of feeding guilds.
  - Fish
    - Fathead Minnow (Trophic Level 2)
    - Black Crappie and Bluegill (Trophic Level 3)
    - Largemouth Bass (Trophic Level 4)
  - Aquatic or Semi-Aquatic Mammals
    - Raccoon (omnivore)
    - River Otter (piscivore)







### **Community Level Receptors**

- Primary Producers
  - Periphyton Community
  - Submerged Aquatic Vegetation
     Community
- Primary Consumers
  - Aquatic Macroinvertebrate Community
  - Ichthyoplankton Community
- Amphibians
  - Amphibian Community

#### **Assessment Endpoint**

Maintenance of community composition and function downstream of the ASR discharge.





#### sfwmd.gov

Individual Level Receptors (i.e. species with special regulatory status)

- Aquatic-Dependent Birds
  - Wood Stork (omnivore)
  - Everglade Snail Kite (invertivore)
- Aquatic Mammal
  - West Indian Manatee (herbivore)







Survival, growth, and reproduction of individuals downstream of the ASR discharge.

sfwmd.gov

#### **Ecological Risk Measurement Endpoints**

#### **Measures of Exposure**

- Describe the location and magnitude of stressors in abiotic and biotic media.
- Used to estimate the exposure of receptors to the stressors.
  - Measured water quality data.
  - Measured and estimated tissue data for use in food chain exposure modeling.





### **Ecological Risk Measurement Endpoints**

#### **Measures of Effects**

- Changes in an attribute of the assessment endpoint in response to exposure.
  - Direct toxicity testing.
  - Direct measures of tissue data compared to effect-based benchmarks.
  - Literature-based exposure measures.
  - Measures of tolerance of thermal and/or physicochemical changes.
  - Direct measures of effects via *in-situ* or mesocosm testing.
  - Modeled effects data related to intake structure operation.



#### sfwmd.gov

### **Ecological Risk Measurement Endpoints**

## Measures of Ecosystem and Receptor Characteristics

- Measurements of aquatic community and population characteristics before and after ASR operations.
- Modeling ecosystem parameters (e.g. modeled changes to Lake Okeechobee algal communities or SAV biomass due to modeled water quality changes) based on water quality changes due to ASR Well discharge.





Figure 5.27-- Periphytometers during initial deployment (left), and after a 28day deployment (right)



#### **Tier 1 Risk Assessment Data Needs**

 Three types of data needed to meet the needs of the assessment and measurement endpoints Field/Laboratory Data (in process) Risk Assessment Data (included in the Work Plan) Modeling Data (in process) Both spatial and temporal data are needed • Spatial – Upstream, mixing zone and downstream of the mixing zone

Temporal – Before and after ASR well operation





#### **Risk Analysis**

#### Exposure Analysis

•Quantify the degree of exposure to receptors from stressors

- Exposure Units (EUs)
- Exposure Point Concentrations (EPCs)

#### Effects Analysis

•Determine the relationship between exposure and effects

Toxicity Reference Values
Direct measures (toxicity testing, bioconcentration testing and community measures)





### **Exposure Units (EUs)**

 Upstream EU Provides data about anthropogenic background stressors C-38 North Downstream EU Area of highest potential impact from C-38 N Well •C-38 South Upstream EU •Fully mixed water from C-38 N discharge C-38 South Downstream EU Area of highest potential impact from C-38 S Well Sitewide EU •Overall estimate of potential risk from the C-38 Well Clusters Final locations of the EUs provided following finalization of construction plans and mixing zone modeling.

sfwmd.gov



Northern Lake Okeechobee

#### **Exposure Analysis**

**Exposure Point Concentrations (EPCs)** 

Maximum EPC (Max EPC)
Maximum exposure to stressors
Conservative screening tool

Upper Bound EPC (UBEPC)95% Upper Confidence Limit on the Mean (95UCL)

Central Tendency EPC (CT EPC)
Geometric mean
Estimates 'average' risk





### **Risk Characterization**

#### Risk Estimation

- Comparison of EPCs to TRVs
- Analysis of direct measures of effects (i.e. toxicity tests and community studies)

#### Risk Description

d.qov

- Quantitative and qualitative discussion
  - Risk estimation results
    - Hazard Quotients
    - Results of direct measures
  - Uncertainty
  - Weight-of-Evidence (WOE) approach (USEPA 2016)

#### Provide Defensible Conclusions

• Defines quantitative likelihood of risk for each endpoint in each EU

 Decision Making Framework Repeatable and

consistent process

 Describe which stressors and receptors are carried forward into the detailed Risk Characterization



sfwmd.gov

#### **Risk Description, Weight-of-Evidence (WOE) Approach**

- Stressors/Receptors ID'd in the Decision Framework
  USEPA (2016) guidance
- Provides a mechanism for weighting the range of data available
  - Not all lines-of-evidence (LOEs) have same strength or reliability
  - Incorporates uncertainty inherent in each LOE
  - Provides an overall estimate of the strength and reliability of the Risk Characterization





#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT

#### Weight-of-Evidence Approach

#### Low Risk

sfwmd.gov

- When the WOE scores for all LOEs indicate low risk potential.
- Where <u>only</u> the LOEs with the lowest weight have potentially elevated risk.
- Recommend Tier 2 Assessment
  - Where WOE scores indicate that risks cannot be determined to be low in Tier 1
- Additional Assessment of Uncertainty
  - Where the potential for risks is equivocal and additional data may be helpful
- Consider Probabilistic Risk Assessment in Tier 1
  - Where additional analyses could significantly aid in reducing uncertainty



#### **Recommended Additional Assessment**

#### Tier 2 Assessment

- Localized effects near ASR Wells and downstream
  - More detailed assessment of individual assessment endpoints and interconnected nature of endpoints
    - Probabilistic Risk Assessment
    - Interconnected exposure models
- Tier 3 Assessment
  - Regional effects from ASR Well discharge

Tiers 2 and 3 will be data intensive and determined based on results of Tier 1. Procedures not defined in the Work Plan



#### **Adaptive Management**

- ERA Work Plan will be completed in advance of the full design and implementation of the ASR Wells
  - Abundant data will be available between the completion of the Work Plan and the ERA
    Flexibility is key
    - Incorporate new data into the ERA
      - Periodic review of data and data collection
      - Incorporate into appendix in ERA Work PlanModify Work Plan if needed
    - Decision tools for determining use of new data
    - Adaptive management of future well clusters based on data ASR ERA data/results





#### **ASR Ecological Risk Assessment**

Thank you. Questions?

Joe Allen Principal Wildlife Biologist / Risk Assessor Formation Environmental jallen@formationenv.com 724-454-7011



Aquifer Storage and Recovery Ecological Risk Assessment Pre-Operational Ecological Monitoring Along the C-38 Canal and N Lake Okeechobee Year 1 Results





## **>** Estimated Timeline





# > Study Purpose

• The ERA Work Plan defined specific measurement endpoints:

 Data needed to assess the potential risk of ASR to ecological receptors (e.g., ASR ERA Risk Management Goal)

Program designed to monitor ecological receptors within vicinity of:

- C38 canal ASRs well clusters (C38N and C38S)
- Kissimmee River ASR (KRASR)
- C38 canal mixing zone at mouth of the canal in N Lake Okeechobee
- Monitoring designed based on:
  - Studies designed based on NRC (2015) uncertainties
  - Panel recommendations included in 2022 Science Plan
  - Specific needs of ERA Work Plan to fill data gaps for quantitative risk assessment identified by inter-agency ERA Working Group in 2021



# > Monitoring Program Overview

### ASR ERA Data Collection Needs

- Surface water data (physicochemical and biological water quality parameters)
- Sediment and tissue chemical data
- Aquatic community and population characteristics

| Monitored Environmental Matrices<br>and Receptors | Metal<br>Concentrations | Nutrient<br>Concentrations | <b>Diversity Indices</b> |
|---------------------------------------------------|-------------------------|----------------------------|--------------------------|
| Surface Water                                     | $\checkmark$            | $\checkmark$               | X                        |
| Periphyton                                        | $\checkmark$            | $\checkmark$               | $\checkmark$             |
| Submerged Aquatic Vegetation                      | х                       | Х                          | $\checkmark$             |
| Benthic Macroinvertebrates                        | х                       | Х                          | $\checkmark$             |
| Sediment                                          | $\checkmark$            | $\checkmark$               | х                        |
| Apple Snails                                      | $\checkmark$            | Х                          | х                        |
| Mussels                                           | $\checkmark$            | Х                          | х                        |
| Fish                                              | $\checkmark$            | Х                          | $\checkmark$             |
| Ichthyoplankton                                   | х                       | Х                          | $\checkmark$             |



## > Year 1 Schedule

| Year                         |      | 2022      |           |             |     | 2023         |          |         |          |         |       |   |     |      |      |
|------------------------------|------|-----------|-----------|-------------|-----|--------------|----------|---------|----------|---------|-------|---|-----|------|------|
| Season                       | Wet  |           |           |             | Dry |              |          |         |          |         | Wet   |   |     |      |      |
| Month                        | July | August    | September | Octoher     |     | November     | December | January | February | March   | April |   | May | June | July |
| Sampling Event               |      | Event 1 E |           | Event 2 Eve |     | nt 3 Event 4 |          | Event 5 |          | Event 6 |       |   |     |      |      |
| Media                        |      |           |           |             |     |              |          |         |          |         |       |   |     |      |      |
| Surface Water                |      | ~         |           | ~           |     |              | ~        |         | ~        |         | ~     |   |     | ~    |      |
| Periphyton                   |      |           | 1         |             |     | 1            |          | 1       |          | 1       |       | 1 |     |      | ×    |
| Submerged Aquatic Vegetation |      |           | х         |             |     |              |          |         |          |         |       |   |     |      |      |
| Benthic Macroinvertebrates   |      |           | ~         |             |     |              |          |         |          | ~       |       |   |     |      |      |
| Sediment                     |      |           | 1         |             |     |              |          |         |          | 1       |       |   |     |      |      |
| Apple Snails                 |      | x         |           |             |     |              |          |         |          |         | 1     |   |     |      |      |
| Mussels                      |      |           | ~         |             |     |              |          |         | ~        |         |       |   |     |      |      |
| Fish Population              |      |           | ~         |             |     |              | 1        |         | 1        |         |       |   |     | 1    |      |
| Fish Tissue                  |      |           | 1         |             |     |              |          |         | ~        |         |       |   |     |      |      |
| Ichthyoplankton              |      |           |           |             |     |              |          | 1       | 1        |         |       |   | 1   | ~    |      |



## > Pre-Operational Studies Study Area



> ectinc.com

# > Work Plans Development

- Develop for each component in collaboration with Formation Environmental to support ASR ERA
- Utilize FDEP SOPs to the extent possible
- Complement PQAP and QASR
- Reviewed and approved through District DrChecks process
- Modified following onset of monitoring studies to better suite conditions encountered in the field (e.g., wildlife interactions, vandalism, water levels)





# > Project Team



- Environmental Consulting & Technology, Inc (ECT)
  - Project management
  - Subcontractor coordination
  - Data analysis and reporting
- Ecological Associates, Inc. (EAI)
  - Field collections
  - Benthic taxonomy
  - Fish and ichthyoplankton taxonomy
- Florida International University (FIU)
  - Periphyton taxonomy
  - Periphyton nutrient analysis
- Eurofins Laboratory
  - Periphyton metals analysis
  - Chemical analysis of surface water, sediments, apple snails, mussels, fish









## Periphyton

- Tissue metal concentrations
- Tissue nutrient concentrations
- Community structure and biomass dynamics

### Floating periphytometers



### Benthic Macroinvertebrates

- Community structure dynamics
- Suspended Hester Dendy Samplers



### Submerged Aquatic Vegetation

- SAV monitoring attempted
- Incomplete due to high water levels post Hurricane Ian



## Surface Water

- Metal, nutrient, additional parameter concentrations
- Ambient water quality (grabs)
- Grabs during all monitoring events
- Continuous monitoring with YSI EXO2

### Sediment

- Metal and nutrient concentrations
- Petite ponar sampler
- Three grab composite



### Mussels

- Tissue metal concentrations
- Flea rake
- Three replicates per station

## Apple Snails

- Tissue metals concentrations
- Baited minnow traps
- Three replicates per station



## Fish

- Tissue metals concentrations
- Community
- Electrofishing
- Dip netting nearshore

## Ichthyoplankton

- Community
- Plankton tows
- Three depths





# > Data Analysis

- Basic summary stats and univariate statistical testing
  - Differences in concentrations and communities by station, season, side
- Data visualizations and multivariate analysis to visualize patterns and examine groupings



| Sample Type                     | Descriptive<br>Statistics and<br>Box Plots                                   | Univariate<br>Comparisons                                                 | Data<br>Visualizations                 | Multivariate<br>Comparisons |  |
|---------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|-----------------------------|--|
| Metal and Nutrient              | Concentrations                                                               |                                                                           |                                        |                             |  |
| Water Quality                   | Station, season,<br>canal side                                               | Station, season,<br>canal side                                            | PCA                                    | ANOSIM,<br>SIMPER           |  |
| Periphyton                      | Station, season,<br>canal side                                               | Station, season,<br>canal side                                            | PCA                                    | ANOSIM,<br>SIMPER,<br>dbLM  |  |
| Sediment                        | Station, season, canal side                                                  | Station, season,<br>canal side                                            | PCA                                    | ANOSIM,<br>SIMPER           |  |
| Apple Snail Tissue              | Data to enable a                                                             | nalysis not available; r<br>single sampling even                          | netal tissue conce<br>at are included. | ntrations from              |  |
| Mussel Tissue                   | Station, season,<br>canal side                                               | Station, season,<br>canal side                                            | PCA                                    | ANOSIM,<br>SIMPER           |  |
| Fish Tissue                     | Species, station,<br>season                                                  | Summarized<br>patterns in station<br>and season                           | PCA                                    | ANOSIM,<br>SIMPER           |  |
| Taxonomy Data                   |                                                                              |                                                                           |                                        |                             |  |
| Periphyton                      | Station, season,<br>canal side                                               | Summarized<br>patterns in station<br>and season                           | PCA                                    | ANOSIM                      |  |
| Submerged Aquatic<br>Vegetation | Data to en                                                                   | able analysis not avail                                                   | able; map of SAV i                     | ncluded.                    |  |
| Benthic<br>macroinvertebrate    | Diversity indices<br>across station<br>and season                            | Diversity indices<br>across station and<br>season                         | nMDS                                   | ANOSIM,<br>SIMPER           |  |
| Fish                            | Diversity indices<br>across station<br>and season                            | Diversity indices<br>across station and<br>season                         | nMDS                                   | ANOSIM,<br>SIMPER           |  |
| Ichthyoplankton                 | Diversity indices<br>across depth,<br>time of day,<br>station, and<br>season | Diversity indices<br>across depth, time<br>of day, station, and<br>season | nMDS                                   | ANOSIM,<br>SIMPER           |  |

Event

Seasor Wet

Dry



# > Year 1 Results

### **General Overview**

- Nutrients measured in water, periphyton, and sediment samples and were frequently detected
- Detections of metals were more variable across both analytes and monitored components
- Observed some expected patterns of biomagnification
- Also observed spatial and seasonal variation

| 96 = Frequency of de<br>96 = Frequency of de | tection of 0%<br>tection <50% |          | Metal   |         |          |         |                   |            |        |          |      |
|----------------------------------------------|-------------------------------|----------|---------|---------|----------|---------|-------------------|------------|--------|----------|------|
| Sample Type                                  | Aluminum                      | Antimony | Arsenic | Cadmium | Chromium | Mercury | Methyl<br>Mercury | Molybdenum | Nickel | Selenium | Zinc |
| Water                                        | 96%                           | 0%       | 15%     | 096     | 24%      | 096     | 99%               | 0%         | 096    | 0%       | 19%  |
| Sediment                                     | 100%                          | 0%       | 1196    | 0%      | 68%      | 43%     | 89%               | 0%         | 2196   | 7%       | 496  |
| Periphyton                                   | 100%                          | 096      | 98%     | 0%      | 98%      | 3296    | 49%               | 55%        | 70%    | 2496     | 97%  |
| Apple Snail                                  | 100%                          | 096      | 90%     | 0%      | 100%     | 50%     | 100%              | 90%        | 100%   | 20%      | 100% |
| Mussel                                       | 9196                          | 0%       | 100%    | 99%     | 87%      | 100%    | 100%              | 91%        | 96%    | 77%      | 100% |
| Fish                                         | 096                           | 096      | 29%     | 0%      | 5296     | 100%    | 100%              | 0%         | 096    | 7196     | 100% |









1m ASR-C38-2 ASR-C38-3 ASR-C38-4 ASR-C38-5 ASR-C38-6 ASR-C38-7 ASR-C38-8 ASR-C38-1 Station



# **Methyl Mercury Example**

Sediment - MeHg Periphyton Tissue - MeHg



Mussel Tissue - MeHg








## Seasonal and spatial differences in diatom community structure







Location E W

E P

# **> Benthic Macroinvertebrates**

2

Richness

## Seasonal and spatial differences in community structure





## Seasonal and spatial differences in community structure









| Group 1 | Largemouth bass | Micropterus salmoides    |
|---------|-----------------|--------------------------|
|         | Florida gar     | Lepistosteus platyhincus |
|         | Bluegill        | Lepomis macrochirus      |
| Group 2 | Shad spp.       | Dorosoma spp.            |
|         | Black crappie   | Pomoxis nigromaculatus   |
| Group 3 | Largemouth bass | Micropterus salmoides    |
|         | Bluegill        | Lepomis macrochirus      |
|         | Black crappie   | Pomoxis nigromaculatus   |
|         | Florida gar     | Lepistosteus platyhincus |
|         | Threadfin shad  | Dorosoma petense         |
|         | White catfish   | Ameiurus catus           |
|         | Channel catfish | Ictalurus punctatus      |

# > Ichthyoplankton

#### Season and diurnal differences in community structure



ectine com

# > Year 1 Results

## Take-Aways

- Variable detections of parameters within the matrices studied
- Mussels showed high frequency of detections of metals supporting their use as an indicator of potential impacts from ASR operations
- Periphyton results suggest individual stations may oscillate between nitrogen- and phosphorus-limitation over time
- Taxonomic data suggest communities differ between canal and lake stations as well as seasonally
- Periphyton abundance appeared to be strongly moderated by time of year
- Surface water quality predicts approximately 45% of periphyton community structure and is a poor predictor of periphyton tissue metal concentrations.
- Variability suggests potential influence from additional sources other than in-lake processes (e.g., stormwater runoff, other canal inflows to Lake Okeechobee)
- As data collection continues, more robust inferences on seasonal and spatial relationships and response to surface water quality will be possible
- Additional data collection needed under pre-operational conditions to establish stronger relationships between
  parameters measured to help inform potential effects of ASR operations and support the ERA.





- Year 2 annual report
- Year 3 monitoring
- Bioconcentration studies
  - Mobile laboratory
  - Fish and mussels
  - Tissue testing
  - Concurrent water quality monitoring
- In-situ bioaccumulation studies
  - Mussels and periphyton
- Toxicity Testing
  - Ecotoxicity tests
  - NDPES and CERP permits
  - Longer-term chronic toxicity study







Fry (7 days)

-Growth

-Behavior

- Abnormalities

Embryo

-Hatchability

-Time to hatch

-Egg production -Survival





Acknowledgements: Chris McHan and Suzy Baird - ECT Mark Mohlmann and Matt Scripter, and team – EAI Evelyn Gaiser and team – FIU Eurofins Laboratories





# Break (15 min)



# SFWMD Okeechobee 2D Seismic Program

## SFWMD ASR Science Plan Workshop Presentation (July 10, 2024)

## Presenters: Ted Stieglitz, Ph.D, Senior Geophysicist, and John Jansen, Ph.D., Principal Geophysicist, Collier Consulting









# The Need for Seismic Reflection Data





• We tend to work with site conceptual models that look like this

- As Geologists, we know the subsurface looks more like this
- The differences are important for well yield, contaminant transport, recharge,.....
- How do we get closer to reality? (Geophysics)



# Seismic Reflection: Map Structure and Stratigraphy





- Seismic reflection provides high-resolution images of the subsurface to screen optimal production well and ASR well locations
- Map major faults, fracture zones and other structure
- Map target zone depth and thickness, lithology and porosity (and permeability?)

# Seismic Reflection Images Vertical and Lateral Lithologic Contacts



Increase in Impedance



LIER

Able to resolve boundaries of beds a few feet thick

http://archives.aapg.org/slide\_resources/schroeder/13/index.cfm

#### Traditional Cable Seismic System



#### Stringing geophone cables



Group of geophones at each take out

#### **Common Seismic Sources**



#### **Vibrosies Source**



Accelerated Impact Seismic Source No explosives, minimal disturbance

#### **Wireless Data Acquisition**





Wireless Geophones No cables



# **Typical 2D Seismic Section**

- Data processed into seismic section
- Plots combined seismic traces at common depth points
- Each reflector (peak and trough) is a geologic layer
- Depth in two-way travel time
- Need velocity measurement to convert time to depth



# **2018 Lithological Well Log Cross-Section**



# **2022 SFWMD 2D Seismic Program & Parameters**



#### SFWMD 2022 2D Seismic Program

- Line C-38N (1 Mile)
- Line C-40 (2 Miles)
- Line C-41 (1 Mile)
- Line C-44 (1 Mile)
- Line C-59 (1 Mile)
- Line L-63N (1/2 Mile)
- Line L-63S (1 Mile)
- Port Mayaca Line (1/2 Mile)

#### **Data Acquisition Parameters**

- RCVR Interval : 50ft
- SRC Interval : 100ft
- Seismic Sampling : 0.
- Record Length
- PreAmp Gain
- : 0.5 ms

: 24dB

: 3 seconds



# 2018 SFWMD Lake Okeechobee Seismic Program



#### **Synthetic Seismogram and Seismic Inversion Results**



- Using the Acoustic Impedance from the well log data (blue curve), along with the seismic wavelet derived from the seismic data, a new Acoustic Impedance curve is generated (red curve).
- Using "recursive" seismic inversion, a more precise synthetic seismogram is generated. Correlation of the synthetic seismogram with traces at CDP 119 have a 94% fit.
- The next step is to generate the seismic attributes sections, coblending Acoustic Impedance, Variance Attribute, Well Log Porosity and Permeability data, with the seismic data inversion process.

GEOPHYSICS









LIER









LLIER PHYSICS



## What is a Seismic Attribute?

- In reflection seismology, a seismic attribute is a quantity and/or quality extracted or derived from seismic data that can be analyzed or processed in order to enhance information that might be more subtle in a traditional seismic image, providing a better geological or geophysical interpretation of the data.
- For aquifer delineation projects, the integration of seismic and well log information can be used to expand and extend understanding of the hydro-stratigraphic structure, porosity and permeability zones, general flow patterns.....and more!



#### **L-63N 2D Seismic Data Co-Blended with Variance Attribute**





#### **Acoustic Impedance Co-Blended with Variance Attribute**





#### **Porosity Section from Converting AI using Well Log Crossplot Data**





## Permeability Section Derived from Sonic Porosity vs Permeability Well Log <u>Crossplot Data</u>



eismic(f)/Log(ISPECIFIC CAPACITY

-0 100 200 300 -0

ed\_L-63N\_syn

- 0.10

SPOR\_Clip

Borehole

Hawthorn Gp

GEOPHYSICS





COLLIER GEOPHYSICS

# **Questions & Discussion**





# ERDC LOWRP ASR STUDIES

Matthew Farthing, Tony Bednar, Jay Clausen, Mandy Michalsen, Chuck Downer, Martin Page US Army Engineer Research and Development Center

Fred Day-Lewis, Jim Szecsody Pacific Northwest National Lab

July 10, 2024

U.S. ARMY

ide fault de Politike (de la constant de la constan granne de la constant de la constant










## BACKGROUND



**Background:** Three categories of engineering considerations associated with Aquifer Storage and Recovery (ASR) element of the Lake Okeechobee Watershed Restoration Project (LOWRP):

- Mobilization and release of pollutants, contaminants, or hazardous substance, and hazardous, toxic, and radioactive wastes (HTRW) constituents;
- First-cost construction; and
- Long-term O&M cost.

**Approach:** Five interrelated tasks, primarily focused on water quality concerns around arsenic mobilization. **Key requirements:** 

- ERDC work will pursue only *ex situ* (i.e., lab and modeling) investigations
- ERDC will collaborate and coordinate with on-going and planned SAJ and SFWMD LOWRP investigations
- Science-based consensus on acceptable risk-levels

Key partners: Pacific Northwest National Lab (PNNL)

### Tasks

- 1. Core collection: Michalsen (EL), Bednar (EL)
- 2. Geochemical Characterization: Clausen (CRREL), Bednar (EL)
- 3. Geohydrologic Characterization: Michalsen (EL), Day-Lewis (PNNL), Szecsody (PNNL)
- 4. Reactive Transport Modeling: Chuck Downer (CHL)
- 5. Surface Water Characterization: Martin Page (EL)



Dec, 2023

A. Core Coll.

**UNCLASSIFIED** 

## **PROPOSED TASKS**



- 1. Core material for lab experiments
- 2. Influent surface water samples for lab experiments
- 3. Parameterization for redox reaction kinetics, sorption/precip (batch)
- 4. Transport parameters from larger column studies
- 5. Updated parameterizations for reaction kinetics, sorption (larger columns)
- 6. Reaction kinetics, sorption, transport parameters from intermediate, intact-core experiments



## **TASK A: CORE COLLECTION FIELD ACTIVITIES**

### **Team Members**

ERDC: Mandy Michalsen, Jay Clausen, Stephen Turnbull, Tony Bednar, Matthew Farthing
PNNL: Fred Day-Lewis, James Szecsody
SFWMD: Jennifer Gent
Stantec: Caroline Smith, John Wu, Rick Cowles





### Obtain subsurface core material and groundwater from the Upper Floridan Aquifer (UFA) and Avon Park Permeable Zone (APPZ)

- Required for laboratory experiments planned during Tasks B & C
- Preserve anoxic/suboxic conditions

# Transport materials to participating organizations to perform subsequent project tasks

- ERDC-EL, Vicksburg, MS
- ERDC-CRREL, Hanover, NH
- PNNL, Richland, WA



### Core sample collected by Stantec/All Webbs Drilling





### Leverage drilling of APPZ Aquifer Storage Recovery wells at L63-N for core collection

- Cores extruded while submersed in tank filled with UFA water
- Core sections placed in 6-inch diameter PVC tubes while submersed
- Sodium dithionite (1 g/tube) added to consume trace oxygen, and cores sealed with minimal headspace

# Maintain sample integrity and chain-of-custody in transport

• ERDC personnel drove core samples to each organization

# Assess initial core sample storage water for Arsenic; suitability screening

- Analyzed core sample storage water by GFAAS as first-order assessment of equilibrated arsenic levels in UFA water in core chambers
- Screened select core chamber contents for suitability at PNNL





Core sample collection and preservation





### **Twelve samples collected from nine cores**

- 10 from the UFA (694–754 feet bls)
- 2 from the APPZ (1301–1311 feet bls)
- Each 4-feet long and 4-inch diameter

### All core materials delivered to labs

- 6 cores delivered to PNNL, in storage (arrive 28-Mar)
- 6 cores delivered to CRREL, in storage (arrive 26-Mar)

### Highly variable As in core storage water

 Measured Arsenic concentration in adjacent samples varied from below the method detection limit (1 ppb) to 23 ppb



| Sample ID | Zone             | Storage Water<br>As (µg/L) |
|-----------|------------------|----------------------------|
| PNNL-1    | UFA <sup>1</sup> | 23.3                       |
| ERDC-2    | UFA <sup>1</sup> | <1                         |
| PNNL-3    | UFA <sup>1</sup> | 2.9                        |
| PNNL-4    | UFA <sup>1</sup> | 6.9                        |
| ERDC-5    | UFA <sup>1</sup> | <1                         |
| PNNL-6    | UFA <sup>2</sup> | 8.5                        |
| PNNL-7    | UFA <sup>2</sup> | 3.3                        |
| ERDC-8    | APPZ             | 14.9                       |
| ERDC-9    | APPZ             | 0.7 J                      |
| ERDC-10   | UFA <sup>1</sup> | 2.7                        |
| ERDC-11   | UFA <sup>1</sup> | <1                         |
| PNNL-12   | UFA <sup>1</sup> | 0.5 J                      |

Initial assessment of Arsenic in core sample storage water. <sup>1</sup>Swanee <sup>2</sup>Ocala

**Results** 





| Sample ID | Zone             | Storage Water<br>As (µg/L) |
|-----------|------------------|----------------------------|
| PNNL-1    | UFA <sup>1</sup> | 23.3                       |
| ERDC-2    | UFA <sup>1</sup> | <1                         |
| PNNL-3    | UFA <sup>1</sup> | 2.9                        |
| PNNL-4    | UFA <sup>1</sup> | 6.9                        |
| ERDC-5    | UFA <sup>1</sup> | <1                         |
| PNNL-6    | UFA <sup>2</sup> | 8.5                        |
| PNNL-7    | UFA <sup>2</sup> | 3.3                        |
| ERDC-8    | APPZ             | 14.9                       |
| ERDC-9    | APPZ             | 0.7 J                      |
| ERDC-10   | UFA <sup>1</sup> | 2.7                        |
| ERDC-11   | UFA <sup>1</sup> | <1                         |
| PNNL-12   | UFA <sup>1</sup> | 0.5 J                      |

Initial assessment of Arsenic in core sample storage water. <sup>1</sup>Swanee <sup>2</sup>Ocala

## **Initial Core Processing at PNNL**

### Are core materials suitable for planned tests? Are samples properly preserved? Do solids contain arsenopyrite?

- Selected single core chamber, PNNL-7, for initial analysis to assess suitability of core materials for Task B and C tests planned
- Collected core chamber water samples (~20 mL in triplicate) for analysis of total As, Ca, Fe, Mg, S

#### Notes and observations

- Notable sulfide odor present in PNNL-7 chamber upon opening.
- Water samples were collected into falcon tubes under N<sub>2</sub> headspace with clean tygon tubing (PNNL-7, PNNL-7A, PNNL-7B). N<sub>2</sub> atmosphere was maintained when core chamber was open.
- Dissolved  $O_2$  was measured in PNNL-7 core chamber water via electrode at <1%  $O_2$  saturation.
- Prepared 144 mg Na<sub>2</sub>CO<sub>3</sub>/L solution to replace sampled PNNL-7 water volume and to ensure minimal headspace during storage. Added Na<sub>2</sub>CO<sub>3</sub> to 18.2 MΩ water on stir plate with N<sub>2</sub> sparge for ~ 1 hr then filtered with 0.2 µm filter. Confirmed < 1.3% O<sub>2</sub> saturation prior in Na<sub>2</sub>CO<sub>3</sub> solution, added it to replenish headspace, then resealed chamber PNNL-7 for storage.





Collecting water samples (a,b), preparing and replacing headspace in core chamber prior to resealing PNNL-7 (c,d) at PNNL lab facility, Richland, WA on 28-Mar-2024.

## **Initial Core Processing at PNNL**

### Are core materials suitable for planned tests? Are samples properly preserved? Do solids contain arsenopyrite?

- Solids were removed from the core chamber and placed in  $CO_3$  saturated water, which was sparged overnight with N<sub>2</sub> (a). Water contained O<sub>2</sub> < 1% saturation prior to use on 28-Mar-2024.
- Core material accessible by hand was removed from PNNL-7 core chamber and placed in container (a) below water surface on parafilm for imaging (b).
- Samples with and without black staining (PNNL-7 black, PNNL- noblack, (c)) were collected in plastic containers and transferred to an anaerobic chamber pending geochemical analysis.







Arrows note potential arsenopyrite observed; inset shows flip side of segment with staining.

## **Initial Core Analysis**

### **Solids Identification by X-Ray Diffraction**

• matrix rock: >99% calcite

- black spots: >90% calcite (blue peaks on XRD)
   <5% kaolinite (green peaks on XRD)
   <2% quartz (red peaks on XRD)
   metallic iron (broad peak #12 at 68 degrees
   no Fe sulfides, no Fe oxides, no MnO<sub>2</sub>
   interpretation: black spots may be material introduced by drilling
   (kaolinite from drilling mud, iron from core barrel)
- XRD detection limit ~0.5% (5,000 ug/g), but dependent on minerals and crystallinity (i.e., broad peaks generally indicate amorphous structure)

## Solids Identification by Acid Dissolution and Metals Analysis

- fraction of pyrite and arsenopyrite from molar ratio of Ca to Fe and S
- fraction of arsenopyrite in pyrite from molar ratio of Fe to As
- additional analysis of trace metals to identify substitution fraction
- aqueous metals analysis by ICP-OES and ICP-MS varies with metal but typically 0.01 to 1 ppb (10<sup>-5</sup> to 10<sup>-3</sup> ug/g) so presence of metals is much lower than XRD, although minerals are not identified







UNCLASSIFIED

# Challenges, Corrective Actions, Next Steps

## **Challenge: Leakage**

- Some core storage tubes leaked small amounts of aquifer water, This appeared not to have impacted the redox status of PNNL-7. Excess dithionite added at time of collection likely minimized any impact to geochemistry of cores in chambers that leaked.
- No corrective action required.

## **Challenge: Core breakage**

- Some cores broke or otherwise had pieces detach during ~3,500 mile road transport. However, substantial core material remains intact for column experiments. No impact on Task B. No impact to Task C either because Task C columns will be prepared by drilling subcores through intact segments.
- No corrective action required.

## **Next steps**

- Collect groundwater samples and distribute to partner organizations
- Submit Task A technical memo documenting methods and results of core collection and screening-level analysis of PNNL-7 water and core material samples.







# TASK E: SOURCE WATERTREATMENT

## **Team Members**

Dr. Martin Page, Dr. Andy Hur, Yongkyu An, Bruce MacAllister, Kathryn Gunderson, Eric Strigotte, Cody Sloat, Dr. Sam Beal, Jenifer Netchaev, and Dr. Jay Clausen





# **Objectives**

- **1.** Generate baseline 'treated source water' samples for use in batch and column studies on potential contaminant mobilization during storage.
- Achieve water quality standards and match Proof-of-Concept pilot results previously achieved by Stantec/SFWMD.
- Generate sufficient sample volumes during representative environmental conditions for ASR operations.

# 2. Assess candidate deoxygenation and water stabilization methods and generate test samples.

- Assess physical and chemical deoxygenation methods.
- Assess chemical stabilization methods.

# 3. Generate representative membrane backwash water samples

Support ongoing solids management design and optimization by Stantec for SFWMD.



Matrix of source water treatment designs to support arsenic mobilization studies and ongoing design optimization efforts.





# Design & build a new ASR source water treatment pilot system

- Sufficient flow to generate samples
- Representative of full-scale operations
- Allow head-to-head comparison of polymeric and ceramic membranes
- Includes new physical and chemical deoxygenation capabilities

### Generate representative water samples and assess design performance at Kissimmee River ASR pilot site

- Baseline testing without deoxygenation or stabilization
- Physical deoxygenation testing with and without stabilization
- Chemical deoxygenation testing with and without stabilization





ERDC pilot assembly (December 2023, Champaign, IL) and KRASR site test plan schematic.

### Results (Design/Assembly of Pilot Treatment System) <sup>\*</sup> ERDC

## **Drafted design and acquired components**

- Capable of testing polymeric and ceramic membranes plus deoxygenation systems
- Matched coagulant dosing and membrane loading rates (flux) to full scale design parameters from previous Stantec/SFWMD study

# Assembled framing, plumbing, electrical, mechanical and controls

- Adjustable pump speeds to maintain target flows
- Automated system with digital controls

# Design reviews and input from Stantec, Hazen & Sawyer, SFWMD, and membrane manufacturers

- Updated design to parallel membrane operation to facilitate head-to-head operation
- Increased polymeric membrane capacity to 1.25 gpm for backwash water generation
- Added and automated chemically-enhanced backwash process based on manufacturer guidelines UNCLASSIFIED



UNCLASSIFIED





### Kissimmee river water treated by the new pilot system was consistent with previous POC study (Stantec, SFWMD)

- Removal of organic matter (color, DOC) was higher with the ceramic membrane approach (attributable to higher ACH dose).
- Removal of particulates (turbidity) was high with both membrane approaches.

## **Observations**

- Feed pressure and fouling rates were higher with the ceramic membranes
- The difference in ACH coagulant dosing for the two membrane types is the likely cause of the treated WQ differences and fouling rates.
  - Large flocs and high turbidity in ceramic feed water
  - Not an apples-to-apples comparison
  - Potential implications for arsenic mobilization potential due to residual dissolved organic carbon in polymeric membrane treated water





| Water<br>Sample                                | WQ<br>Parameter | POC Study | Current<br>Study |  |  |  |  |  |  |
|------------------------------------------------|-----------------|-----------|------------------|--|--|--|--|--|--|
|                                                | Turbidity       | 3.4       | 2.13             |  |  |  |  |  |  |
| Kissimmee<br>River Raw<br>Water                | DOC             | 18.7      | 15.8             |  |  |  |  |  |  |
|                                                | Color           | 100       | 103              |  |  |  |  |  |  |
|                                                | рН              | 7.14      | 7.19             |  |  |  |  |  |  |
| Polymeric<br>Membrane<br>Filtered<br>(Zeeweed) | Turbidity       | 0.028     | < 0.1            |  |  |  |  |  |  |
|                                                | DOC             | 14.9      | 12.8             |  |  |  |  |  |  |
|                                                | Color           | 50        | 48               |  |  |  |  |  |  |
|                                                | рН              | 7.03      | 7.18             |  |  |  |  |  |  |
|                                                | Turbidity       | 0.018     | < 0.1            |  |  |  |  |  |  |
| Membrane                                       | DOC             | 7.7       | 6.3              |  |  |  |  |  |  |
| Filtered                                       | Color           | 7.5       | 7.9              |  |  |  |  |  |  |
| (AquaAerobic)                                  | рН              | 7.05      | 7.28             |  |  |  |  |  |  |





# SELECT WATER QUALITY DATA



| Baseline                                           |
|----------------------------------------------------|
| Phys Deox                                          |
| Phsy Deox + CaCl <sub>2</sub> /Ca(OH) <sub>2</sub> |
| NaSH Deox                                          |
| NaSH Deox + CaCl <sub>2</sub> /Ca(OH) <sub>2</sub> |
|                                                    |





## SELECT WATER QUALITY DATA DISSOLVED OXYGEN



| Baseline                                           |
|----------------------------------------------------|
| Phys Deox                                          |
| Phsy Deox + CaCl <sub>2</sub> /Ca(OH) <sub>2</sub> |
| NaSH Deox                                          |
| NaSH Deox + CaCl <sub>2</sub> /Ca(OH) <sub>2</sub> |

UNCLASSIFIED

# Results (Objective 2- Deoxygenation & Stabilization)



# Physical deoxygenation approached but did not meet target of < 0.5 ppm dissolved oxygen level

Vacuum pressure of -11 psi applied through a hollow fiber gas permeable membrane to removed dissolved oxygen

- 1.1-1.4 ppm DO levels at higher flow rate (1.25 gpm)
- 0.7-0.9 ppm DO levels at lower flow rate (0.25 gpm)
- Need to assess water quality impacts, fouling impacts, cleanability, and scalability of the membrane degassing approach

# Chemical deoxygenation with NaSH did not approach target DO levels

NaSH dosed at 10 ppm (in excess of the stoichiometric DO demand)

- While ORP reduction was rapid, DO removal required > 90 minutes to achieve < 2.0 ppm.
- Bench scale studies indicate potential interaction with ACH, but this interaction did not appear to impact DO removal rates significantly or floc formation.
- Caution needed for future bench scale studies of arsenic mobilization- need to consider kinetic effects.

# Chemical stabilization with CaCl<sub>2</sub> and Ca(OH)<sub>2</sub> as tested had limited impacts on pH and alkalinity.

• Need to split stock solutions and consider NaOH.



Results of NaSH jar tests explaining why effluent DO levels were high in pilot studies





## Results (Objective 3- Generate backwash water samples)

# System operated continuously for 21 days in May 2024 to generate enough water for Stantec/SFWMD

- Turbidity ~30 NTU for several days after intense rains
- Sustained product water quality; membrane fouling did not change significantly

## **Continuous physical deoxygenation testing**

- -26 inHg sustained vacuum pressure over 3-week operation
- Achieved 0.6-0.8 ppm DO @ 0.25 gpm (ceramic membrane effluent)
- Design optimization studies recommended

## Membrane backwash samples

- ~90% recovery rate for both polymeric and ceramic membranes
- Adjusted solids content by proportionally decanting settled solids to represent filter water recovery rates of full scale design (95% for polymeric, 93% for ceramic)
- Transferred to Stantec for dewatering studies.

UNCLASSIFIED



Stantec engineers and ERDC researchers collaborating and leveraging resources to support broader project objectives



Algae along shoreline near KRASR intake structure after intense rains (May 2024)

# **Next Steps for Task E Team**

## Provide technical support for Task B

 Advise on water quality control to achieve representative testing conditions in bench scale batch studies of potential contaminant mobilization during aquifer storage of the treated source water.

## **Future Pilot Field Studies**

- Support generation of water samples for batch arsenic mobilization studies during rainy season
- Generation of water samples for aquifer core column testing (Task C)
- Support potential additional studies needed by SFWMD to inform future design work (pending approvals, funding).



106





Yongkyu An (controls engineer) after completing automation of pilot system operations. Sam Beal (ERDC CRREL) will be performing batch studies on arsenic mobilization as part of Task B.

## 





# Panel Discussion - Q/A with Presenters (30 min)





Public Comment Period

(15 min)







## Closing Remarks and Expected Progress Over The Next Two Years

**Presenter: Anna Wachnicka, Ph.D.** Principal Scientist/ASR Science Plan Project Manager, SFWMD







| Westle Outlease                                     | Cal Year 2021 |        |       |        |        |        |         | Cal Year 2022 |       |       |           |        |       |       |         | Cal Year 2023 |        |         |       |        |     |       |           |        | (      | Cal Yea | ar 2024 |         |         |        | Cal Year 2025 |       |          |          |        |         |        |        |
|-----------------------------------------------------|---------------|--------|-------|--------|--------|--------|---------|---------------|-------|-------|-----------|--------|-------|-------|---------|---------------|--------|---------|-------|--------|-----|-------|-----------|--------|--------|---------|---------|---------|---------|--------|---------------|-------|----------|----------|--------|---------|--------|--------|
| work orders                                         |               | Mar Ap | r May | Jun Ju | ul Aug | Sep Oc | t Nov I | Dec Jar       | n Feb | Mar A | pr May Ju | ın Jul | Aug S | ep Oc | t Nov [ | Dec Ja        | in Feb | Mar Apr | May J | un Jul | Aug | Sep ( | oct Nov D | ec Jan | Feb Ma | Apr M   | lay Jun | Jul Aug | Sep Oct | Nov De | c Jan F       | eb Ma | ar Apr l | ∕lay Jun | Jul Au | g Sep ( | Oct No | ov Dec |
| ASR Programmatic Quality Assurance Plan (Stantec)   |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Mobile Lab Design and Bench-Scale, Mesocosm and     |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Toxicity Study Plans (ECT)                          |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| ERA Scoping (PSI-Intertec/Formation)                |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| ERA Historic Data Analysis (PSI-Intertec/Formation) |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| ERA Work Plan Completion (PSI-Intertec/Formation)   |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Mobile Lab (ECT)                                    |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| OBI logging (USGS)                                  |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Seismic/Geophysical Evaluation (Collier Geophisics) |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Long-term Eco Monitoring along C-38 Canal (ECT)     |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Periphyton Community Analysis (FIU)                 |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Bio-clogging (USGS)                                 |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Fracture Porosity Assessment (USGS)                 |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Core Geochemical Analyses (FGCU)                    |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Local-scale groundwater modeling (Stantec)          |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Mixing Zone Modeling (PSI-Intertec/ECT)             |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| DO Removal Technology Evaluation (Stantec)          |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Evaluation of Arsenic Mobilization (ERDC-USACE)     |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Survey of Radium Occurrence (USACE)                 |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |
| Chronic and Acute Toxicity Tests                    |               |        |       |        |        |        |         |               |       |       |           |        |       |       |         |               |        |         |       |        |     |       |           |        |        |         |         |         |         |        |               |       |          |          |        |         |        |        |





| S                    | OUTH FLORIDA WAT                                           | ER MANAGEMENT DISTRICT                                                                                                                                                                                                        |
|----------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Quantitative ASR                                           | <b>Ecological Risk Assessment</b>                                                                                                                                                                                             |
|                      | _                                                          | - Next Steps                                                                                                                                                                                                                  |
| oleted               | Phase 1:<br>Project Scoping & Working<br>Group Formulation | <ul> <li>Goal: Develop scoping document outlining a path<br/>forward for planning and implementation of the revised<br/>Quantitative ASR ERA &amp; assemble a Working Group<br/>composed of subject matter experts</li> </ul> |
|                      |                                                            |                                                                                                                                                                                                                               |
| Ŭ                    | Phase 2:<br>Eco Risk Assessment Planning                   | <ul> <li>Goal: Identify data gaps and develop a Work Plan for<br/>completion of the Quantitative Ecological Risk<br/>Assessment (ERA)</li> </ul>                                                                              |
| Current<br>Work      | Phase 3:<br>Data Collection                                | Goal: Collect the data identified in the ERA Work Plan to complete the ERA                                                                                                                                                    |
| Planned<br>for ~2026 | Phase 4:<br>Performing Ecological Risk<br>Assessment       | <ul> <li>Goal: Provide a technically defensible assessment of<br/>ecological risks from the operation of the planned ASR<br/>wells</li> </ul>                                                                                 |

-

## Long-Term Eco Monitoring- C-38 Canal and N Lake O. – Current Status and Next Steps

### **Study Area**



Goal: Evaluation of long-term bioaccumulation and community-level responses at different temporal and spatial scales

- Pre-Operational monitoring (2022 2026)
- 2 3 years monitoring once cycling begins (2026 2029)
- Monitoring Eco Components: periphyton, mussels, invertebrates, fish/ichthyoplankton

If significant accumulation of chemical compounds found, monitoring of upper trophic level organisms may be added













## Bench-Scale Chronic and Acute Toxicity Tests - Forthcoming



- Goal: Evaluation of responses of selected organisms to varying phys-chem. water quality conditions using source, recovered and mixed water
- Completed and Planned Activities
  - Mobile temperature-controlled flow-through laboratory constructed in 2023
  - Test of Survival, Growth, Reproduction under varying conditions of interest planned for ~2025-2027











### sfwmd.gov

## Mixing Zone Modeling – Current Status and Next Steps

## Modeling Goals

- Support SFWMD ASR permitting
- Support ASR Ecological Risk Assessment
- Support ASR outfall design/blending/pre-treatment and engineering specifications

## Work Completed in 2023-2024

- Modeling completed for C-38S
  - Establishment of initial conditions (WQ info w/ bathometric surveys)
  - Impacts analysis
  - Multi-beam survey of one-mile C38S C38N section

### Next Steps

- Modeling may be conducted at other ASR locations e.g., L-63N
- More detailed mixing zone modeling may be implemented





Survey of Radium Occurrence in Native UFA and APPZ - Current Status and Next Steps

- Radium isotope and Gross Alpha data were compiled from 85 well construction reports throughout South Florida
- Data obtained from UFA, APPZ, Hawthorn, and Boulder Zone aquifers
- Radium isotope exceedances found mostly in native groundwater in Lee County and Collier County wells
- Tech memo summarizing results is forthcoming in 2024



Ra226 + Ra228 in APPZ wells



Ra226 + Ra228 in UFA wells



## Local Scale Groundwater Model C-38N and C-38S - Current Status and Next Steps

### **Modeling Setup**

- MODFLOW (USGS Groundwater Model Code)
- SEAWAT Density and Viscosity Dependent Flow to Evaluate Upconing Potential and Recovery Efficiency
- 50 MGD Each ASR Well Field (100 MGD combined)
  - 25 MGD Stored and Recovered in the UFA and APPZ Aquifers (5 MGD each ASR well)
- Model Domain 40 miles on each side
- Variable Gid 50-foot grid size around each ASR well
- Model consists of 22 Layers

### **Modeling Goals**

- Determine ASR Well Spacing
- Evaluate Upconing Potential
- Determine Storage Zone Bubble Geometry
- Estimate Recovery Efficiently
- Evaluate Effects on Legal User

#### Groundwater Model Layers

| Hydrogeologic Unit                | Number of Model Layers |
|-----------------------------------|------------------------|
| Surficial Aquifer System (SAS)    | 1                      |
| Intermediate Confining Unit (ICU) | 2                      |
| Upper Floridan (UFA)              | 5                      |
| Upper Middle Confining Unit (MC1) | 2                      |
| Avon Park Permeable Zone (APPZ)   | 5                      |
| Lower Middle Confining Unit (MC2) | 2                      |
| Lower Floridan (LF)               | 2                      |
| Lower Confining Unit (LC)         | 2                      |
| Boulder Zone (BZ)                 | 1                      |

### sfwmd.gov

## Local Scale Groundwater Model C-38N and C-38S - Current Status and Next Steps

### **Model Domain and Grid**

### **ASR Well Spacing Evaluation**

MW-19 8 0-22 0 08 '0 0 0 110 -0:02

- Model Domain Includes Future ASR Wellfields for future model development
- Modeling Confirms 1,000 feet between ASR Well Pairs
- Modeling is Expected to be Complete by the end of July 2024





## Borehole Fracture Interpretation and Analysis - Current Status and Next Steps

### **Modeling Setup**

- Utilizing WellDAD (RockWare software)
- Raw OBI data C-38N, C-38S, L-63N, C-59, L-63S
- Raw geophysical log (.las) files and Video Logs C-38N, C-38S, L-63N, C-59, L-63S
- E. Richardson data
- Lineament study data
- Stantec, SFWMD, and USGS cross-sections
- Seismic Attribute Processing for Fracture Mapping (both 2D and 3D)

### **Modeling Goals**

sfwmd.gov

- Identify Reginal and Local Fracture Trends Including location, apparent dip, and aperture of the fractures
- Determine General Flow and Non-Flowing Fractures
- Identify Voids vs Fractures where Possible
- Determine Preferential Groundwater Flow Direction



#### Fracture in APPZ

#### ORIDA WATER MANAGEMENT DISTRICT sou

## **Expectations from Peer Review Panel** and 2024 ASR Science Plan (Version 2.0) Next Steps

- Each panelist to prepare a memorandum August 12<sup>th</sup>
- Chair to compile memos into the 2024 Peer Review Panel Report – September 9<sup>th</sup>
- SFWMD/USACE to revise the Draft 2024 ASR Science Plan Report – September 23<sup>rd</sup>
- Reconvene with the Peer Review Panel late September
- Release Draft Report for 30-day public review early-October
- Finalize Comment/Response Matrix and release Final 2024 ASR Science Plan in November-December 2024



**Aquifer Storage and Recovery Plan** SCIENCE PLAN



L63N Drilling Site





Ecological Studies: Periphytometer and Plate retrieved from C385 site

C59 Continuous Core 1820, 1830 feet below land ru





Aquifer Pump Test at C385

C38S Drill Site for Test Well

#### Presenter: Anna Wachnicka 122




## Thank You!

www.sfwmd.gov/lowrp or www.sfwmd.gov/asr

