	INDIAN PRAIRIE - C-41 BASIN TECHNICAL SHEET												
Subwatershed:	Indian Prairie												
Basin:	C-41	Flow Issues ¹ : NO	Water Quality Issues ² :										
Monitored Strue	cture(s):	S-71											
Inflow loads:		Lake Istokpoga											
Acreage:		112,880											
Percentage of S	ubwatershed Acreage:	41%	41%										
Percentage of La	ake Okeechobee Watershed:	3.3%											

¹Flow Issues:

- The proportion of load and flows generated among C-40, C-41, C-41A is not known. It is currently estimated by an algebraic equation.

- The flow increased between pre and post-protection plan periods but it was not statistically significant and there were no statistically significant trends in any period.

- Flow and load estimates were based on samples and measurements taken at major structures within the regional system.

²Water Quality Issues:

- The TP flow-weighted mean concentrations (FWMC) were among the highest of all basins (453 µg/L during the post-protection plan period) relative to other areas in this subwatershed.

- This basin had the largest contribution of TP load to the subwatershed during both the pre and post-protection plan periods.

-There was a slight decrease (not statistically significant) in the TP flow-weighted mean concentrations (FWMC) between the pre and post-protection plan periods.

Pre-Protection Plan Flows

Post-Protection Plan Flows

Pre-Protection Plan Loads

MEAN FWM AND PERCENT P LOAD CONTRIBUTION BY BASIN (1991 - 2004) Basin 322 µg/L 162 µg/L 152 µg/L 111 µg/L (Avg. P Load, metric tons)

Post-Protection Plan Loads

MEAN FWM AND PERCENT P LOAD CONTRIBUTION BY BASIN (2005 - 2018) Basin 218 μg/L 169 μg/L 144 μg/L 129 μg/L (Avg. P Load, metric tons)

C-41 BASIN - MAP

 $\textit{File: \ad.sfwmd.gov\dfsroot\userdata\rmiessau\Docs\DPI\lowp\technical_sheet\Indian_Prairie_C-41_Basin_Technical_Sheet.xlsx-C-41_Basin_Sheet.xlsx-C-41_Basin_C-41_Basin_C-41_Basin_C-41_Basin_C-41_Basin_C-41_Basin_C-41_Basin_C-41_Basin_C-41_Basin_C-41_B$

C-41 BASIN - STATISTICS

Summary Statistics													
	Period of Record	Pre-Protection Plan	Post-Protection Plan										
	WY1991-WY2018	WY1991-WY2004	WY2005-WY2018										
Averages													
Avg. Flow (acft/yr)	60,252	54,816	65,687										
Avg. Load (mt/yr)	35.51	34.33	36.69										
FWMC (ug/L)	478	508	453										
Avg. UAL (Ibs/acre/yr)	0.69	0.67	0.72										
Medians				Mann-Whitney Results p-values ³									
Median Flow (acft/yr)	58,049	58,049	59,177	0.4907									
Median Load (mt/yr)	32.75	32.41	35.72	0.7132									
Median FWMC (ug/L)	491.13	513	458	0.4213									
Median UAL (lbs/acre/yr)	0.64	0.64	0.70	0.7131									
(1) Control to a low on the standard standard standard standards.	1												

Highlighted cells indicate statistical significance

³The Mann-Whitney test is a non-parametric test alternative to the two sample t-test. It is used to test the equality around the central tendency of two data sets (pre-protection plan period and post-protection plan period). A p-value of less than 0.05 indicates that a significant difference between pre-protection plan period and post-protection plan period exists. A comparison of the median values identifies which period is higher. A median is a value at the mid-point of a distribution of observed data.

Sub-watershed Indian Prairie - Seasonal Kendall t Results for Total Monthly Flow (ac-ft) by Basin over Three Water Year Ranges

1991-2018								1991-2004			2005-2018				
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value
C-41 Basin	1.8%	0.049	22.36	1269	0.246	2.4%	-0.004	-0.81	1918	0.961	1.2%	0.135	88.72	580	0.070

Sub-watershed Indian Prairie - Seasonal Kendall t Results for Total Monthly P Load (kg) by Basin over Three Water Year Ranges

1991-2018								1991-2004			2005-2018					
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	
C-41 Basin	1.8%	-0.047	-3.36	542	0.331	2.4%	0.002	0.00	681	0.987	1.2%	0.071	4.21	229	0.166	

Sub-watershed Indian Prairie - Seasonal Kendall τ Results for Monthly FWM TP (µg/L) by Basin over Three Water Year Ranges

			1991-2018					1991-2004			2005-2018				
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value
C-41 Basin	40.2%	0.064	2	341	0.381	40.5%	0.245	18	241	0.058	39.9%	-0.062	-4	407	0.471

Italic red font cells indicate statistical significance

Note: The Seasonal Kendall Tau analyzes data for monotonic trends (consistent upward or downward trend) and accounts for seasonality. Typically monthly data are used to identify seasons. Probability values (p-values) are derived from the tau-statistic which identifies the direction of the trend. A pvalue less than 0.05 detects statistically significant trends for a period of interest. The Sen Slope provides an indication of the magnitude of the observed trend.

C-41 BASIN - MONTHLY DATA AND SKT TRENDS

 $\label{eq:rescaled} File: \label{eq:rescaled} with the rescaled and the$